This code doesn't need to be portable (since the goal is to have a smaller offset for x64 codegen), so if it's not supported there are other problems. Similar code exists in e.g. DSP.cpp.
These are trivial to resolve.
Converting the structure member into a u32 results in no increase in
structure size, as it's making use of the three extra padding bits in
the structure.
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
Not doing this can cause desyncs when TASing. (I don't know
how common such desyncs would be, though. For games that
don't change rounding modes, they shouldn't be a problem.)
Doesn't support triggering interrupts when the thermal threshold is
exceeded, but allows polling for temperature information.
The THRM[123] registers are documented in most PPC datasheets, see e.g.
this PPC750CX one: http://datasheets.chipdb.org/IBM/PowerPC/750/750cx_um3-17-05.pdf
Previously, PowerPC.h had four macros in it like so:
\#define rPS0(i) (*(double*)(&PowerPC::ppcState.ps[i][0]))
\#define rPS1(i) (*(double*)(&PowerPC::ppcState.ps[i][1]))
\#define riPS0(i) (*(u64*)(&PowerPC::ppcState.ps[i][0]))
\#define riPS1(i) (*(u64*)(&PowerPC::ppcState.ps[i][1]))
Casting between object representations like this is undefined behavior.
Given this is used heavily with the interpreter (that is, the most
accurate, but slowest CPU backend), we don't exactly want to allow
undefined behavior to creep into it.
Instead, this adds a helper struct for operating with the paired singles,
and replaces the four macros with a single macro for accessing the
paired-singles/floating-point registers.
This way, it's left up to the caller to explicitly decide how it wants to interpret
the data (and makes it more obvious where different interpretations of
the same data are occurring at, as there'll be a call to one of the
[x]AsDouble() functions).
Makes the enum values strongly-typed and prevents the identifiers from
polluting the PowerPC namespace. This also cleans up the parameters of
some functions where we were accepting an ambiguous int type and
expecting the correct values to be passed in.
Now those parameters accept a PowerPC::CPUCore type only, making it
immediately obvious which values should be passed in. It also turns out
we were storing these core types into other structures as plain ints,
which have also been corrected.
As this type is used directly with the configuration code, we need to
provide our own overloaded insertion (<<) and extraction (>>) operators
in order to make it compatible with it. These are fairly trivial to
implement, so there's no issue here.
A minor adjustment to TryParse() was required, as our generic function
was doing the following:
N tmp = 0;
which is problematic, as custom types may not be able to have that
assignment performed (e.g. strongly-typed enums), so we change this to:
N tmp;
which is sufficient, as the value is attempted to be initialized
immediately under that statement.
Prevents implicit conversions to types and requires explicitly
specifying them in order to construct instances of them. Given these are
used within emulation code directly, being explicit is always better
than implicit.
PowerPC.h at this point is pretty much a general glob of stuff, and it's
unfortunate, since it means pulling in a lot of unrelated header
dependencies and a bunch of other things that don't need to be seen by
things that just want to read memory.
Breaking this out into its own header keeps all the MMU-related stuff
together and also limits the amount of header dependencies being
included (the primary motivation for this being the former reason).
Ideally none of these macros would exist (long-term goal), however in
the meantime at least make sure expressions always evaluate correctly
(thankfully no current usages rely on this).