dolphin/Source/Core/Core/PatchEngine.cpp
JosJuice 7cecb28bdf DolphinQt: Properly lock CPU before accessing emulated memory
This fixes a problem I was having where using frame advance with the
debugger open would frequently cause panic alerts about invalid addresses
due to the CPU thread changing MSR.DR while the host thread was trying
to access memory.

To aid in tracking down all the places where we weren't properly locking
the CPU, I've created a new type (in Core.h) that you have to pass as a
reference or pointer to functions that require running as the CPU thread.
2023-02-12 11:27:50 +01:00

365 lines
9.9 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
// PatchEngine
// Supports simple memory patches, and has a partial Action Replay implementation
// in ActionReplay.cpp/h.
#include "Core/PatchEngine.h"
#include <algorithm>
#include <array>
#include <iterator>
#include <map>
#include <mutex>
#include <optional>
#include <span>
#include <string>
#include <vector>
#include <fmt/format.h>
#include "Common/Assert.h"
#include "Common/Debug/MemoryPatches.h"
#include "Common/IniFile.h"
#include "Common/StringUtil.h"
#include "Core/ActionReplay.h"
#include "Core/CheatCodes.h"
#include "Core/Config/SessionSettings.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/Debugger/PPCDebugInterface.h"
#include "Core/GeckoCode.h"
#include "Core/GeckoCodeConfig.h"
#include "Core/PowerPC/MMU.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
namespace PatchEngine
{
constexpr std::array<const char*, 3> s_patch_type_strings{{
"byte",
"word",
"dword",
}};
static std::vector<Patch> s_on_frame;
static std::vector<std::size_t> s_on_frame_memory;
static std::mutex s_on_frame_memory_mutex;
static std::map<u32, int> s_speed_hacks;
const char* PatchTypeAsString(PatchType type)
{
return s_patch_type_strings.at(static_cast<int>(type));
}
std::optional<PatchEntry> DeserializeLine(std::string line)
{
std::string::size_type loc = line.find('=');
if (loc != std::string::npos)
line[loc] = ':';
const std::vector<std::string> items = SplitString(line, ':');
PatchEntry entry;
if (items.size() < 3)
return std::nullopt;
if (!TryParse(items[0], &entry.address))
return std::nullopt;
if (!TryParse(items[2], &entry.value))
return std::nullopt;
if (items.size() >= 4)
{
if (!TryParse(items[3], &entry.comparand))
return std::nullopt;
entry.conditional = true;
}
const auto iter = std::find(s_patch_type_strings.begin(), s_patch_type_strings.end(), items[1]);
if (iter == s_patch_type_strings.end())
return std::nullopt;
entry.type = static_cast<PatchType>(std::distance(s_patch_type_strings.begin(), iter));
return entry;
}
std::string SerializeLine(const PatchEntry& entry)
{
if (entry.conditional)
{
return fmt::format("0x{:08X}:{}:0x{:08X}:0x{:08X}", entry.address,
PatchEngine::PatchTypeAsString(entry.type), entry.value, entry.comparand);
}
else
{
return fmt::format("0x{:08X}:{}:0x{:08X}", entry.address,
PatchEngine::PatchTypeAsString(entry.type), entry.value);
}
}
void LoadPatchSection(const std::string& section, std::vector<Patch>* patches,
const IniFile& globalIni, const IniFile& localIni)
{
const IniFile* inis[2] = {&globalIni, &localIni};
for (const IniFile* ini : inis)
{
std::vector<std::string> lines;
Patch currentPatch;
ini->GetLines(section, &lines);
for (std::string& line : lines)
{
if (line.empty())
continue;
if (line[0] == '$')
{
// Take care of the previous code
if (!currentPatch.name.empty())
{
patches->push_back(currentPatch);
}
currentPatch.entries.clear();
// Set name and whether the patch is user defined
currentPatch.name = line.substr(1, line.size() - 1);
currentPatch.user_defined = (ini == &localIni);
}
else
{
if (std::optional<PatchEntry> entry = DeserializeLine(line))
currentPatch.entries.push_back(*entry);
}
}
if (!currentPatch.name.empty() && !currentPatch.entries.empty())
{
patches->push_back(currentPatch);
}
ReadEnabledAndDisabled(*ini, section, patches);
if (ini == &globalIni)
{
for (Patch& patch : *patches)
patch.default_enabled = patch.enabled;
}
}
}
void SavePatchSection(IniFile* local_ini, const std::vector<Patch>& patches)
{
std::vector<std::string> lines;
std::vector<std::string> lines_enabled;
std::vector<std::string> lines_disabled;
for (const auto& patch : patches)
{
if (patch.enabled != patch.default_enabled)
(patch.enabled ? lines_enabled : lines_disabled).emplace_back('$' + patch.name);
if (!patch.user_defined)
continue;
lines.emplace_back('$' + patch.name);
for (const PatchEntry& entry : patch.entries)
lines.emplace_back(SerializeLine(entry));
}
local_ini->SetLines("OnFrame_Enabled", lines_enabled);
local_ini->SetLines("OnFrame_Disabled", lines_disabled);
local_ini->SetLines("OnFrame", lines);
}
static void LoadSpeedhacks(const std::string& section, IniFile& ini)
{
std::vector<std::string> keys;
ini.GetKeys(section, &keys);
for (const std::string& key : keys)
{
std::string value;
ini.GetOrCreateSection(section)->Get(key, &value, "BOGUS");
if (value != "BOGUS")
{
u32 address;
u32 cycles;
bool success = true;
success &= TryParse(key, &address);
success &= TryParse(value, &cycles);
if (success)
{
s_speed_hacks[address] = static_cast<int>(cycles);
}
}
}
}
int GetSpeedhackCycles(const u32 addr)
{
const auto iter = s_speed_hacks.find(addr);
if (iter == s_speed_hacks.end())
return 0;
return iter->second;
}
void LoadPatches()
{
IniFile merged = SConfig::GetInstance().LoadGameIni();
IniFile globalIni = SConfig::GetInstance().LoadDefaultGameIni();
IniFile localIni = SConfig::GetInstance().LoadLocalGameIni();
LoadPatchSection("OnFrame", &s_on_frame, globalIni, localIni);
// Check if I'm syncing Codes
if (Config::Get(Config::SESSION_CODE_SYNC_OVERRIDE))
{
Gecko::SetSyncedCodesAsActive();
ActionReplay::SetSyncedCodesAsActive();
}
else
{
Gecko::SetActiveCodes(Gecko::LoadCodes(globalIni, localIni));
ActionReplay::LoadAndApplyCodes(globalIni, localIni);
}
LoadSpeedhacks("Speedhacks", merged);
}
static void ApplyPatches(const Core::CPUThreadGuard& guard, const std::vector<Patch>& patches)
{
for (const Patch& patch : patches)
{
if (patch.enabled)
{
for (const PatchEntry& entry : patch.entries)
{
u32 addr = entry.address;
u32 value = entry.value;
u32 comparand = entry.comparand;
switch (entry.type)
{
case PatchType::Patch8Bit:
if (!entry.conditional || PowerPC::HostRead_U8(guard, addr) == static_cast<u8>(comparand))
PowerPC::HostWrite_U8(guard, static_cast<u8>(value), addr);
break;
case PatchType::Patch16Bit:
if (!entry.conditional ||
PowerPC::HostRead_U16(guard, addr) == static_cast<u16>(comparand))
PowerPC::HostWrite_U16(guard, static_cast<u16>(value), addr);
break;
case PatchType::Patch32Bit:
if (!entry.conditional || PowerPC::HostRead_U32(guard, addr) == comparand)
PowerPC::HostWrite_U32(guard, value, addr);
break;
default:
// unknown patchtype
break;
}
}
}
}
}
static void ApplyMemoryPatches(const Core::CPUThreadGuard& guard,
std::span<const std::size_t> memory_patch_indices)
{
std::lock_guard lock(s_on_frame_memory_mutex);
for (std::size_t index : memory_patch_indices)
{
PowerPC::debug_interface.ApplyExistingPatch(guard, index);
}
}
// Requires MSR.DR, MSR.IR
// There's no perfect way to do this, it's just a heuristic.
// We require at least 2 stack frames, if the stack is shallower than that then it won't work.
static bool IsStackValid(const Core::CPUThreadGuard& guard)
{
auto& system = Core::System::GetInstance();
auto& ppc_state = system.GetPPCState();
DEBUG_ASSERT(ppc_state.msr.DR && ppc_state.msr.IR);
// Check the stack pointer
u32 SP = ppc_state.gpr[1];
if (!PowerPC::HostIsRAMAddress(guard, SP))
return false;
// Read the frame pointer from the stack (find 2nd frame from top), assert that it makes sense
u32 next_SP = PowerPC::HostRead_U32(guard, SP);
if (next_SP <= SP || !PowerPC::HostIsRAMAddress(guard, next_SP) ||
!PowerPC::HostIsRAMAddress(guard, next_SP + 4))
return false;
// Check the link register makes sense (that it points to a valid IBAT address)
const u32 address = PowerPC::HostRead_U32(guard, next_SP + 4);
return PowerPC::HostIsInstructionRAMAddress(guard, address) &&
0 != PowerPC::HostRead_Instruction(guard, address);
}
void AddMemoryPatch(std::size_t index)
{
std::lock_guard lock(s_on_frame_memory_mutex);
s_on_frame_memory.push_back(index);
}
void RemoveMemoryPatch(std::size_t index)
{
std::lock_guard lock(s_on_frame_memory_mutex);
s_on_frame_memory.erase(std::remove(s_on_frame_memory.begin(), s_on_frame_memory.end(), index),
s_on_frame_memory.end());
}
bool ApplyFramePatches()
{
auto& system = Core::System::GetInstance();
auto& ppc_state = system.GetPPCState();
ASSERT(Core::IsCPUThread());
Core::CPUThreadGuard guard;
// Because we're using the VI Interrupt to time this instead of patching the game with a
// callback hook we can end up catching the game in an exception vector.
// We deal with this by returning false so that SystemTimers will reschedule us in a few cycles
// where we can try again after the CPU hopefully returns back to the normal instruction flow.
if (!ppc_state.msr.DR || !ppc_state.msr.IR || !IsStackValid(guard))
{
DEBUG_LOG_FMT(ACTIONREPLAY,
"Need to retry later. CPU configuration is currently incorrect. PC = {:#010x}, "
"MSR = {:#010x}",
ppc_state.pc, ppc_state.msr.Hex);
return false;
}
ApplyPatches(guard, s_on_frame);
ApplyMemoryPatches(guard, s_on_frame_memory);
// Run the Gecko code handler
Gecko::RunCodeHandler(guard);
ActionReplay::RunAllActive(guard);
return true;
}
void Shutdown()
{
s_on_frame.clear();
s_speed_hacks.clear();
ActionReplay::ApplyCodes({});
Gecko::Shutdown();
}
void Reload()
{
Shutdown();
LoadPatches();
}
} // namespace PatchEngine