mirror of
https://github.com/PCSX2/pcsx2.git
synced 2025-12-16 04:08:48 +00:00
3rdparty: Update fast_float to v8.0.2
This commit is contained in:
parent
377930d004
commit
8bcc2c94b9
1
3rdparty/fast_float/CONTRIBUTORS
vendored
1
3rdparty/fast_float/CONTRIBUTORS
vendored
@ -8,3 +8,4 @@ Lénárd Szolnoki
|
||||
Jan Pharago
|
||||
Maya Warrier
|
||||
Taha Khokhar
|
||||
Anders Dalvander
|
||||
|
||||
489
3rdparty/fast_float/README.md
vendored
489
3rdparty/fast_float/README.md
vendored
@ -1,160 +1,233 @@
|
||||
|
||||
## fast_float number parsing library: 4x faster than strtod
|
||||
[](https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:fast_float)
|
||||
|
||||
[](https://github.com/fastfloat/fast_float/actions/workflows/ubuntu22.yml)
|
||||
|
||||
The fast_float library provides fast header-only implementations for the C++ from_chars
|
||||
functions for `float` and `double` types as well as integer types. These functions convert ASCII strings representing decimal values (e.g., `1.3e10`) into binary types. We provide exact rounding (including
|
||||
round to even). In our experience, these `fast_float` functions many times faster than comparable number-parsing functions from existing C++ standard libraries.
|
||||
The fast_float library provides fast header-only implementations for the C++
|
||||
from_chars functions for `float` and `double` types as well as integer types.
|
||||
These functions convert ASCII strings representing decimal values (e.g.,
|
||||
`1.3e10`) into binary types. We provide exact rounding (including round to
|
||||
even). In our experience, these `fast_float` functions many times faster than
|
||||
comparable number-parsing functions from existing C++ standard libraries.
|
||||
|
||||
Specifically, `fast_float` provides the following two functions to parse floating-point numbers with a C++17-like syntax (the library itself only requires C++11):
|
||||
Specifically, `fast_float` provides the following two functions to parse
|
||||
floating-point numbers with a C++17-like syntax (the library itself only
|
||||
requires C++11):
|
||||
|
||||
```C++
|
||||
from_chars_result from_chars(const char* first, const char* last, float& value, ...);
|
||||
from_chars_result from_chars(const char* first, const char* last, double& value, ...);
|
||||
from_chars_result from_chars(char const *first, char const *last, float &value, ...);
|
||||
from_chars_result from_chars(char const *first, char const *last, double &value, ...);
|
||||
```
|
||||
|
||||
You can also parse integer types:
|
||||
|
||||
|
||||
|
||||
```C++
|
||||
from_chars_result from_chars(char const *first, char const *last, int &value, ...);
|
||||
from_chars_result from_chars(char const *first, char const *last, unsigned &value, ...);
|
||||
```
|
||||
|
||||
The return type (`from_chars_result`) is defined as the struct:
|
||||
|
||||
```C++
|
||||
struct from_chars_result {
|
||||
const char* ptr;
|
||||
std::errc ec;
|
||||
char const *ptr;
|
||||
std::errc ec;
|
||||
};
|
||||
```
|
||||
|
||||
It parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
|
||||
a locale-independent format equivalent to the C++17 from_chars function.
|
||||
The resulting floating-point value is the closest floating-point values (using either float or double),
|
||||
using the "round to even" convention for values that would otherwise fall right in-between two values.
|
||||
That is, we provide exact parsing according to the IEEE standard.
|
||||
It parses the character sequence `[first, last)` for a number. It parses
|
||||
floating-point numbers expecting a locale-independent format equivalent to the
|
||||
C++17 from_chars function. The resulting floating-point value is the closest
|
||||
floating-point values (using either `float` or `double`), using the "round to
|
||||
even" convention for values that would otherwise fall right in-between two
|
||||
values. That is, we provide exact parsing according to the IEEE standard.
|
||||
|
||||
Given a successful parse, the pointer (`ptr`) in the returned value is set to
|
||||
point right after the parsed number, and the `value` referenced is set to the
|
||||
parsed value. In case of error, the returned `ec` contains a representative
|
||||
error, otherwise the default (`std::errc()`) value is stored.
|
||||
|
||||
Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
|
||||
parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
|
||||
`ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
|
||||
|
||||
The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
|
||||
The implementation does not throw and does not allocate memory (e.g., with `new`
|
||||
or `malloc`).
|
||||
|
||||
It will parse infinity and nan values.
|
||||
|
||||
Example:
|
||||
|
||||
``` C++
|
||||
```C++
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::string input = "3.1416 xyz ";
|
||||
double result;
|
||||
auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
std::string input = "3.1416 xyz ";
|
||||
double result;
|
||||
auto answer = fast_float::from_chars(input.data(), input.data() + input.size(), result);
|
||||
if (answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
You can parse delimited numbers:
|
||||
|
||||
```C++
|
||||
const std::string input = "234532.3426362,7869234.9823,324562.645";
|
||||
std::string input = "234532.3426362,7869234.9823,324562.645";
|
||||
double result;
|
||||
auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) {
|
||||
auto answer = fast_float::from_chars(input.data(), input.data() + input.size(), result);
|
||||
if (answer.ec != std::errc()) {
|
||||
// check error
|
||||
}
|
||||
// we have result == 234532.3426362.
|
||||
if(answer.ptr[0] != ',') {
|
||||
if (answer.ptr[0] != ',') {
|
||||
// unexpected delimiter
|
||||
}
|
||||
answer = fast_float::from_chars(answer.ptr + 1, input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) {
|
||||
answer = fast_float::from_chars(answer.ptr + 1, input.data() + input.size(), result);
|
||||
if (answer.ec != std::errc()) {
|
||||
// check error
|
||||
}
|
||||
// we have result == 7869234.9823.
|
||||
if(answer.ptr[0] != ',') {
|
||||
if (answer.ptr[0] != ',') {
|
||||
// unexpected delimiter
|
||||
}
|
||||
answer = fast_float::from_chars(answer.ptr + 1, input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) {
|
||||
answer = fast_float::from_chars(answer.ptr + 1, input.data() + input.size(), result);
|
||||
if (answer.ec != std::errc()) {
|
||||
// check error
|
||||
}
|
||||
// we have result == 324562.645.
|
||||
```
|
||||
|
||||
Like the C++17 standard, the `fast_float::from_chars` functions take an optional
|
||||
last argument of the type `fast_float::chars_format`. It is a bitset value: we
|
||||
check whether `fmt & fast_float::chars_format::fixed` and `fmt &
|
||||
fast_float::chars_format::scientific` are set to determine whether we allow the
|
||||
fixed point and scientific notation respectively. The default is
|
||||
`fast_float::chars_format::general` which allows both `fixed` and `scientific`.
|
||||
|
||||
The library seeks to follow the C++17 (see
|
||||
[28.2.3.(6.1)](https://eel.is/c++draft/charconv.from.chars#6.1)) specification.
|
||||
|
||||
Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
|
||||
the type `fast_float::chars_format`. It is a bitset value: we check whether
|
||||
`fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
|
||||
to determine whether we allow the fixed point and scientific notation respectively.
|
||||
The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
|
||||
|
||||
The library seeks to follow the C++17 (see [20.19.3](http://eel.is/c++draft/charconv.from.chars).(7.1)) specification.
|
||||
* The `from_chars` function does not skip leading white-space characters.
|
||||
* [A leading `+` sign](https://en.cppreference.com/w/cpp/utility/from_chars) is forbidden.
|
||||
* It is generally impossible to represent a decimal value exactly as binary floating-point number (`float` and `double` types). We seek the nearest value. We round to an even mantissa when we are in-between two binary floating-point numbers.
|
||||
* The `from_chars` function does not skip leading white-space characters (unless
|
||||
`fast_float::chars_format::skip_white_space` is set).
|
||||
* [A leading `+` sign](https://en.cppreference.com/w/cpp/utility/from_chars) is
|
||||
forbidden (unless `fast_float::chars_format::allow_leading_plus` is set).
|
||||
* It is generally impossible to represent a decimal value exactly as binary
|
||||
floating-point number (`float` and `double` types). We seek the nearest value.
|
||||
We round to an even mantissa when we are in-between two binary floating-point
|
||||
numbers.
|
||||
|
||||
Furthermore, we have the following restrictions:
|
||||
* We only support `float` and `double` types at this time.
|
||||
|
||||
* We support `float` and `double`, but not `long double`. We also support
|
||||
fixed-width floating-point types such as `std::float64_t`, `std::float32_t`,
|
||||
`std::float16_t`, and `std::bfloat16_t`.
|
||||
* We only support the decimal format: we do not support hexadecimal strings.
|
||||
* For values that are either very large or very small (e.g., `1e9999`), we represent it using the infinity or negative infinity value and the returned `ec` is set to `std::errc::result_out_of_range`.
|
||||
* For values that are either very large or very small (e.g., `1e9999`), we
|
||||
represent it using the infinity or negative infinity value and the returned
|
||||
`ec` is set to `std::errc::result_out_of_range`.
|
||||
|
||||
We support Visual Studio, macOS, Linux, freeBSD. We support big and little endian. We support 32-bit and 64-bit systems.
|
||||
|
||||
We assume that the rounding mode is set to nearest (`std::fegetround() == FE_TONEAREST`).
|
||||
We support Visual Studio, macOS, Linux, freeBSD. We support big and little
|
||||
endian. We support 32-bit and 64-bit systems.
|
||||
|
||||
We assume that the rounding mode is set to nearest (`std::fegetround() ==
|
||||
FE_TONEAREST`).
|
||||
|
||||
## Integer types
|
||||
|
||||
You can also parse integer types using different bases (e.g., 2, 10, 16). The following code will
|
||||
print the number 22250738585072012 three times:
|
||||
|
||||
You can also parse integer types using different bases (e.g., 2, 10, 16). The
|
||||
following code will print the number 22250738585072012 three times:
|
||||
|
||||
```C++
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
uint64_t i;
|
||||
const char str[] = "22250738585072012";
|
||||
auto answer = fast_float::from_chars(str, str + strlen(str), i);
|
||||
std::string str = "22250738585072012";
|
||||
auto answer = fast_float::from_chars(str.data(), str.data() + str.size(), i);
|
||||
if (answer.ec != std::errc()) {
|
||||
std::cerr << "parsing failure\n";
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
std::cout << "parsed the number "<< i << std::endl;
|
||||
std::cout << "parsed the number " << i << std::endl;
|
||||
|
||||
const char binstr[] = "1001111000011001110110111001001010110100111000110001100";
|
||||
std::string binstr = "1001111000011001110110111001001010110100111000110001100";
|
||||
|
||||
answer = fast_float::from_chars(binstr, binstr + strlen(binstr), i, 2);
|
||||
answer = fast_float::from_chars(binstr.data(), binstr.data() + binstr.size(), i, 2);
|
||||
if (answer.ec != std::errc()) {
|
||||
std::cerr << "parsing failure\n";
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
std::cout << "parsed the number "<< i << std::endl;
|
||||
std::cout << "parsed the number " << i << std::endl;
|
||||
|
||||
std::string hexstr = "4f0cedc95a718c";
|
||||
|
||||
const char hexstr[] = "4f0cedc95a718c";
|
||||
|
||||
answer = fast_float::from_chars(hexstr, hexstr + strlen(hexstr), i, 16);
|
||||
answer = fast_float::from_chars(hexstr.data(), hexstr.data() + hexstr.size(), i, 16);
|
||||
if (answer.ec != std::errc()) {
|
||||
std::cerr << "parsing failure\n";
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
std::cout << "parsed the number "<< i << std::endl;
|
||||
std::cout << "parsed the number " << i << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
## Behavior of result_out_of_range
|
||||
|
||||
When parsing floating-point values, the numbers can sometimes be too small
|
||||
(e.g., `1e-1000`) or too large (e.g., `1e1000`). The C language established the
|
||||
precedent that these small values are out of range. In such cases, it is
|
||||
customary to parse small values to zero and large values to infinity. That is
|
||||
the behaviour of the C language (e.g., `stdtod`). That is the behaviour followed
|
||||
by the fast_float library.
|
||||
|
||||
Specifically, we follow Jonathan Wakely's interpretation of the standard:
|
||||
|
||||
> In any case, the resulting value is one of at most two floating-point values
|
||||
> closest to the value of the string matching the pattern.
|
||||
|
||||
It is also the approach taken by the [Microsoft C++
|
||||
library](https://github.com/microsoft/STL/blob/62205ab155d093e71dd9588a78f02c5396c3c14b/tests/std/tests/P0067R5_charconv/test.cpp#L943-L946).
|
||||
|
||||
Hence, we have the following examples:
|
||||
|
||||
```cpp
|
||||
double result = -1;
|
||||
std::string str = "3e-1000";
|
||||
auto r = fast_float::from_chars(str.data(), str.data() + str.size(), result);
|
||||
// r.ec == std::errc::result_out_of_range
|
||||
// r.ptr == str.data() + 7
|
||||
// result == 0
|
||||
```
|
||||
|
||||
```cpp
|
||||
double result = -1;
|
||||
std::string str = "3e1000";
|
||||
auto r = fast_float::from_chars(str.data(), str.data() + str.size(), result);
|
||||
// r.ec == std::errc::result_out_of_range
|
||||
// r.ptr == str.data() + 6
|
||||
// result == std::numeric_limits<double>::infinity()
|
||||
```
|
||||
|
||||
Users who wish for the value to be left unmodified given
|
||||
`std::errc::result_out_of_range` may do so by adding two lines of code:
|
||||
|
||||
```cpp
|
||||
double old_result = result; // make copy
|
||||
auto r = fast_float::from_chars(start, end, result);
|
||||
if (r.ec == std::errc::result_out_of_range) { result = old_result; }
|
||||
```
|
||||
|
||||
## C++20: compile-time evaluation (constexpr)
|
||||
|
||||
In C++20, you may use `fast_float::from_chars` to parse strings
|
||||
at compile-time, as in the following example:
|
||||
In C++20, you may use `fast_float::from_chars` to parse strings at compile-time,
|
||||
as in the following example:
|
||||
|
||||
```C++
|
||||
// consteval forces compile-time evaluation of the function in C++20.
|
||||
consteval double parse(std::string_view input) {
|
||||
double result;
|
||||
auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) { return -1.0; }
|
||||
auto answer = fast_float::from_chars(input.data(), input.data() + input.size(), result);
|
||||
if (answer.ec != std::errc()) { return -1.0; }
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -167,108 +240,107 @@ constexpr double constexptest() {
|
||||
|
||||
## C++23: Fixed width floating-point types
|
||||
|
||||
The library also supports fixed-width floating-point types such as `std::float32_t` and `std::float64_t`. E.g., you can write:
|
||||
The library also supports fixed-width floating-point types such as
|
||||
`std::float64_t`, `std::float32_t`, `std::float16_t`, and `std::bfloat16_t`.
|
||||
E.g., you can write:
|
||||
|
||||
```C++
|
||||
std::float32_t result;
|
||||
auto answer = fast_float::from_chars(f.data(), f.data() + f.size(), result);
|
||||
``````
|
||||
|
||||
```
|
||||
|
||||
## Non-ASCII Inputs
|
||||
|
||||
We also support UTF-16 and UTF-32 inputs, as well as ASCII/UTF-8, as in the following example:
|
||||
We also support UTF-16 and UTF-32 inputs, as well as ASCII/UTF-8, as in the
|
||||
following example:
|
||||
|
||||
``` C++
|
||||
```C++
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::u16string input = u"3.1416 xyz ";
|
||||
double result;
|
||||
auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
std::u16string input = u"3.1416 xyz ";
|
||||
double result;
|
||||
auto answer = fast_float::from_chars(input.data(), input.data() + input.size(), result);
|
||||
if (answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
## Advanced options: using commas as decimal separator, JSON and Fortran
|
||||
|
||||
## Advanced options: using commas as decimal separator, JSON and Fortran
|
||||
|
||||
The C++ standard stipulate that `from_chars` has to be locale-independent. In
|
||||
particular, the decimal separator has to be the period (`.`). However,
|
||||
some users still want to use the `fast_float` library with in a locale-dependent
|
||||
manner. Using a separate function called `from_chars_advanced`, we allow the users
|
||||
to pass a `parse_options` instance which contains a custom decimal separator (e.g.,
|
||||
the comma). You may use it as follows.
|
||||
particular, the decimal separator has to be the period (`.`). However, some
|
||||
users still want to use the `fast_float` library with in a locale-dependent
|
||||
manner. Using a separate function called `from_chars_advanced`, we allow the
|
||||
users to pass a `parse_options` instance which contains a custom decimal
|
||||
separator (e.g., the comma). You may use it as follows.
|
||||
|
||||
```C++
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::string input = "3,1416 xyz ";
|
||||
double result;
|
||||
fast_float::parse_options options{fast_float::chars_format::general, ','};
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data()+input.size(), result, options);
|
||||
if((answer.ec != std::errc()) || ((result != 3.1416))) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
std::string input = "3,1416 xyz ";
|
||||
double result;
|
||||
fast_float::parse_options options{fast_float::chars_format::general, ','};
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data() + input.size(), result, options);
|
||||
if ((answer.ec != std::errc()) || ((result != 3.1416))) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
You can also parse Fortran-like inputs:
|
||||
### You can also parse Fortran-like inputs
|
||||
|
||||
```C++
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::string input = "1d+4";
|
||||
double result;
|
||||
fast_float::parse_options options{ fast_float::chars_format::fortran };
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data()+input.size(), result, options);
|
||||
if((answer.ec != std::errc()) || ((result != 10000))) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
std::string input = "1d+4";
|
||||
double result;
|
||||
fast_float::parse_options options{fast_float::chars_format::fortran};
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data() + input.size(), result, options);
|
||||
if ((answer.ec != std::errc()) || ((result != 10000))) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
You may also enforce the JSON format ([RFC 8259](https://datatracker.ietf.org/doc/html/rfc8259#section-6)):
|
||||
|
||||
### You may also enforce the JSON format ([RFC 8259](https://datatracker.ietf.org/doc/html/rfc8259#section-6))
|
||||
|
||||
```C++
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::string input = "+.1"; // not valid
|
||||
double result;
|
||||
fast_float::parse_options options{ fast_float::chars_format::json };
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data()+input.size(), result, options);
|
||||
if(answer.ec == std::errc()) { std::cerr << "should have failed\n"; return EXIT_FAILURE; }
|
||||
return EXIT_SUCCESS;
|
||||
std::string input = "+.1"; // not valid
|
||||
double result;
|
||||
fast_float::parse_options options{fast_float::chars_format::json};
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data() + input.size(), result, options);
|
||||
if (answer.ec == std::errc()) { std::cerr << "should have failed\n"; return EXIT_FAILURE; }
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
By default the JSON format does not allow `inf`:
|
||||
|
||||
```C++
|
||||
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::string input = "inf"; // not valid in JSON
|
||||
double result;
|
||||
fast_float::parse_options options{ fast_float::chars_format::json };
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data()+input.size(), result, options);
|
||||
if(answer.ec == std::errc()) { std::cerr << "should have failed\n"; return EXIT_FAILURE; }
|
||||
std::string input = "inf"; // not valid in JSON
|
||||
double result;
|
||||
fast_float::parse_options options{fast_float::chars_format::json};
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data() + input.size(), result, options);
|
||||
if (answer.ec == std::errc()) { std::cerr << "should have failed\n"; return EXIT_FAILURE; }
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
You can allow it with a non-standard `json_or_infnan` variant:
|
||||
|
||||
```C++
|
||||
@ -276,55 +348,77 @@ You can allow it with a non-standard `json_or_infnan` variant:
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::string input = "inf"; // not valid in JSON but we allow it with json_or_infnan
|
||||
double result;
|
||||
fast_float::parse_options options{ fast_float::chars_format::json_or_infnan };
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data()+input.size(), result, options);
|
||||
if(answer.ec != std::errc() || (!std::isinf(result))) { std::cerr << "should have parsed infinity\n"; return EXIT_FAILURE; }
|
||||
return EXIT_SUCCESS;
|
||||
std::string input = "inf"; // not valid in JSON but we allow it with json_or_infnan
|
||||
double result;
|
||||
fast_float::parse_options options{fast_float::chars_format::json_or_infnan};
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data() + input.size(), result, options);
|
||||
if (answer.ec != std::errc() || (!std::isinf(result))) { std::cerr << "should have parsed infinity\n"; return EXIT_FAILURE; }
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
``````
|
||||
```
|
||||
|
||||
## Relation With Other Work
|
||||
## Users and Related Work
|
||||
|
||||
The fast_float library is part of:
|
||||
|
||||
- GCC (as of version 12): the `from_chars` function in GCC relies on fast_float.
|
||||
- [WebKit](https://github.com/WebKit/WebKit), the engine behind Safari (Apple's web browser)
|
||||
* GCC (as of version 12): the `from_chars` function in GCC relies on fast_float,
|
||||
* [Chromium](https://github.com/Chromium/Chromium), the engine behind Google
|
||||
Chrome, Microsoft Edge, and Opera,
|
||||
* [WebKit](https://github.com/WebKit/WebKit), the engine behind Safari (Apple's
|
||||
web browser),
|
||||
* [DuckDB](https://duckdb.org),
|
||||
* [Redis](https://github.com/redis/redis) and [Valkey](https://github.com/valkey-io/valkey),
|
||||
* [Apache Arrow](https://github.com/apache/arrow/pull/8494) where it multiplied
|
||||
the number parsing speed by two or three times,
|
||||
* [Google Jsonnet](https://github.com/google/jsonnet),
|
||||
* [ClickHouse](https://github.com/ClickHouse/ClickHouse).
|
||||
|
||||
The fastfloat algorithm is part of the [LLVM standard
|
||||
libraries](https://github.com/llvm/llvm-project/commit/87c016078ad72c46505461e4ff8bfa04819fe7ba).
|
||||
There is a [derived implementation part of
|
||||
AdaCore](https://github.com/AdaCore/VSS).
|
||||
|
||||
The fastfloat algorithm is part of the [LLVM standard libraries](https://github.com/llvm/llvm-project/commit/87c016078ad72c46505461e4ff8bfa04819fe7ba).
|
||||
|
||||
There is a [derived implementation part of AdaCore](https://github.com/AdaCore/VSS).
|
||||
|
||||
|
||||
The fast_float library provides a performance similar to that of the [fast_double_parser](https://github.com/lemire/fast_double_parser) library but using an updated algorithm reworked from the ground up, and while offering an API more in line with the expectations of C++ programmers. The fast_double_parser library is part of the [Microsoft LightGBM machine-learning framework](https://github.com/microsoft/LightGBM).
|
||||
The fast_float library provides a performance similar to that of the
|
||||
[fast_double_parser](https://github.com/lemire/fast_double_parser) library but
|
||||
using an updated algorithm reworked from the ground up, and while offering an
|
||||
API more in line with the expectations of C++ programmers. The
|
||||
fast_double_parser library is part of the [Microsoft LightGBM machine-learning
|
||||
framework](https://github.com/microsoft/LightGBM).
|
||||
|
||||
## References
|
||||
|
||||
- Daniel Lemire, [Number Parsing at a Gigabyte per Second](https://arxiv.org/abs/2101.11408), Software: Practice and Experience 51 (8), 2021.
|
||||
- Noble Mushtak, Daniel Lemire, [Fast Number Parsing Without Fallback](https://arxiv.org/abs/2212.06644), Software: Practice and Experience 53 (7), 2023.
|
||||
* Daniel Lemire, [Number Parsing at a Gigabyte per
|
||||
Second](https://arxiv.org/abs/2101.11408), Software: Practice and Experience
|
||||
51 (8), 2021.
|
||||
* Noble Mushtak, Daniel Lemire, [Fast Number Parsing Without
|
||||
Fallback](https://arxiv.org/abs/2212.06644), Software: Practice and Experience
|
||||
53 (7), 2023.
|
||||
|
||||
## Other programming languages
|
||||
|
||||
- [There is an R binding](https://github.com/eddelbuettel/rcppfastfloat) called `rcppfastfloat`.
|
||||
- [There is a Rust port of the fast_float library](https://github.com/aldanor/fast-float-rust/) called `fast-float-rust`.
|
||||
- [There is a Java port of the fast_float library](https://github.com/wrandelshofer/FastDoubleParser) called `FastDoubleParser`. It used for important systems such as [Jackson](https://github.com/FasterXML/jackson-core).
|
||||
- [There is a C# port of the fast_float library](https://github.com/CarlVerret/csFastFloat) called `csFastFloat`.
|
||||
|
||||
|
||||
## Users
|
||||
|
||||
The fast_float library is used by [Apache Arrow](https://github.com/apache/arrow/pull/8494) where it multiplied the number parsing speed by two or three times. It is also used by [ClickHouse](https://github.com/ClickHouse/ClickHouse) and by [Google Jsonnet](https://github.com/google/jsonnet). It is part of GCC (as of GCC 12). It is part of WebKit (Safari).
|
||||
|
||||
* [There is an R binding](https://github.com/eddelbuettel/rcppfastfloat) called
|
||||
`rcppfastfloat`.
|
||||
* [There is a Rust port of the fast_float
|
||||
library](https://github.com/aldanor/fast-float-rust/) called
|
||||
`fast-float-rust`.
|
||||
* [There is a Java port of the fast_float
|
||||
library](https://github.com/wrandelshofer/FastDoubleParser) called
|
||||
`FastDoubleParser`. It used for important systems such as
|
||||
[Jackson](https://github.com/FasterXML/jackson-core).
|
||||
* [There is a C# port of the fast_float
|
||||
library](https://github.com/CarlVerret/csFastFloat) called `csFastFloat`.
|
||||
|
||||
## How fast is it?
|
||||
|
||||
It can parse random floating-point numbers at a speed of 1 GB/s on some systems. We find that it is often twice as fast as the best available competitor, and many times faster than many standard-library implementations.
|
||||
It can parse random floating-point numbers at a speed of 1 GB/s on some systems.
|
||||
We find that it is often twice as fast as the best available competitor, and
|
||||
many times faster than many standard-library implementations.
|
||||
|
||||
<img src="http://lemire.me/blog/wp-content/uploads/2020/11/fastfloat_speed.png" width="400">
|
||||
<img src="https://lemire.me/blog/wp-content/uploads/2020/11/fastfloat_speed.png"
|
||||
width="400" alt="fast_float is many times faster than many standard-library
|
||||
implementations">
|
||||
|
||||
```
|
||||
```bash
|
||||
$ ./build/benchmarks/benchmark
|
||||
# parsing random integers in the range [0,1)
|
||||
volume = 2.09808 MB
|
||||
@ -335,75 +429,122 @@ abseil : 430.45 MB/s (+/- 2.2 %) 20.52 Mfl
|
||||
fastfloat : 1042.38 MB/s (+/- 9.9 %) 49.68 Mfloat/s
|
||||
```
|
||||
|
||||
See https://github.com/lemire/simple_fastfloat_benchmark for our benchmarking code.
|
||||
|
||||
See the [Benchmarking](#benchmarking) section for instructions on how to run our benchmarks.
|
||||
|
||||
## Video
|
||||
|
||||
[](http://www.youtube.com/watch?v=AVXgvlMeIm4)<br />
|
||||
[](https://www.youtube.com/watch?v=AVXgvlMeIm4)
|
||||
|
||||
## Using as a CMake dependency
|
||||
|
||||
This library is header-only by design. The CMake file provides the `fast_float` target
|
||||
which is merely a pointer to the `include` directory.
|
||||
This library is header-only by design. The CMake file provides the `fast_float`
|
||||
target which is merely a pointer to the `include` directory.
|
||||
|
||||
If you drop the `fast_float` repository in your CMake project, you should be able to use
|
||||
it in this manner:
|
||||
If you drop the `fast_float` repository in your CMake project, you should be
|
||||
able to use it in this manner:
|
||||
|
||||
```cmake
|
||||
add_subdirectory(fast_float)
|
||||
target_link_libraries(myprogram PUBLIC fast_float)
|
||||
```
|
||||
|
||||
Or you may want to retrieve the dependency automatically if you have a sufficiently recent version of CMake (3.11 or better at least):
|
||||
Or you may want to retrieve the dependency automatically if you have a
|
||||
sufficiently recent version of CMake (3.11 or better at least):
|
||||
|
||||
```cmake
|
||||
FetchContent_Declare(
|
||||
fast_float
|
||||
GIT_REPOSITORY https://github.com/lemire/fast_float.git
|
||||
GIT_TAG tags/v1.1.2
|
||||
GIT_REPOSITORY https://github.com/fastfloat/fast_float.git
|
||||
GIT_TAG tags/v8.0.2
|
||||
GIT_SHALLOW TRUE)
|
||||
|
||||
FetchContent_MakeAvailable(fast_float)
|
||||
target_link_libraries(myprogram PUBLIC fast_float)
|
||||
|
||||
```
|
||||
|
||||
You should change the `GIT_TAG` line so that you recover the version you wish to use.
|
||||
You should change the `GIT_TAG` line so that you recover the version you wish to
|
||||
use.
|
||||
|
||||
You may also use [CPM](https://github.com/cpm-cmake/CPM.cmake), like so:
|
||||
|
||||
```cmake
|
||||
CPMAddPackage(
|
||||
NAME fast_float
|
||||
GITHUB_REPOSITORY "fastfloat/fast_float"
|
||||
GIT_TAG v8.0.2)
|
||||
```
|
||||
|
||||
## Using as single header
|
||||
|
||||
The script `script/amalgamate.py` may be used to generate a single header
|
||||
version of the library if so desired.
|
||||
Just run the script from the root directory of this repository.
|
||||
You can customize the license type and output file if desired as described in
|
||||
the command line help.
|
||||
version of the library if so desired. Just run the script from the root
|
||||
directory of this repository. You can customize the license type and output file
|
||||
if desired as described in the command line help.
|
||||
|
||||
You may directly download automatically generated single-header files:
|
||||
|
||||
https://github.com/fastfloat/fast_float/releases/download/v6.1.1/fast_float.h
|
||||
<https://github.com/fastfloat/fast_float/releases/download/v8.0.2/fast_float.h>
|
||||
|
||||
## RFC 7159
|
||||
## Benchmarking
|
||||
|
||||
If you need support for RFC 7159 (JSON standard), you may want to consider using the [fast_double_parser](https://github.com/lemire/fast_double_parser/) library instead.
|
||||
The project has its own benchmarks with realistic data inputs. Under Linux or macOS,
|
||||
you can use it as follows if your system supports C++17:
|
||||
|
||||
```
|
||||
cmake -B build -D FASTFLOAT_BENCHMARKS=ON
|
||||
cmake --build build
|
||||
./build/benchmarks/realbenchmark
|
||||
```
|
||||
|
||||
Importantly, by default, the benchmark is built in Release mode.
|
||||
|
||||
The instructions are similar under Windows.
|
||||
|
||||
Under Linux and macOS, it is recommended to run the benchmarks in a privileged manner to get access
|
||||
to hardware performance counters. You may be able to do so with the `sudo` command
|
||||
in some cases:
|
||||
|
||||
```
|
||||
sudo ./build/benchmarks/realbenchmark
|
||||
```
|
||||
|
||||
If you have a text file containing one number per line (`myfile.txt`), you can run a benchmark over it like so:
|
||||
```
|
||||
cmake -B build -D FASTFLOAT_BENCHMARKS=ON
|
||||
cmake --build build
|
||||
./build/benchmarks/realbenchmark myfile.txt
|
||||
```
|
||||
|
||||
|
||||
## Packages
|
||||
|
||||
* The fast_float library is part of the [Conan package
|
||||
manager](https://conan.io/center/recipes/fast_float).
|
||||
* It is part of the [brew package
|
||||
manager](https://formulae.brew.sh/formula/fast_float).
|
||||
* Some Linux distribution like Fedora include fast_float (e.g., as
|
||||
`fast_float-devel`).
|
||||
|
||||
## Credit
|
||||
|
||||
Though this work is inspired by many different people, this work benefited especially from exchanges with
|
||||
Michael Eisel, who motivated the original research with his key insights, and with Nigel Tao who provided
|
||||
invaluable feedback. Rémy Oudompheng first implemented a fast path we use in the case of long digits.
|
||||
Though this work is inspired by many different people, this work benefited
|
||||
especially from exchanges with Michael Eisel, who motivated the original
|
||||
research with his key insights, and with Nigel Tao who provided invaluable
|
||||
feedback. Rémy Oudompheng first implemented a fast path we use in the case of
|
||||
long digits.
|
||||
|
||||
The library includes code adapted from Google Wuffs (written by Nigel Tao) which was originally published
|
||||
under the Apache 2.0 license.
|
||||
The library includes code adapted from Google Wuffs (written by Nigel Tao) which
|
||||
was originally published under the Apache 2.0 license.
|
||||
|
||||
## License
|
||||
|
||||
<sup>
|
||||
Licensed under either of <a href="LICENSE-APACHE">Apache License, Version
|
||||
2.0</a> or <a href="LICENSE-MIT">MIT license</a> or <a href="LICENSE-BOOST">BOOST license</a> .
|
||||
2.0</a> or <a href="LICENSE-MIT">MIT license</a> or <a
|
||||
href="LICENSE-BOOST">BOOST license</a>.
|
||||
</sup>
|
||||
|
||||
<br>
|
||||
<br/>
|
||||
|
||||
<sub>
|
||||
Unless you explicitly state otherwise, any contribution intentionally submitted
|
||||
|
||||
@ -20,8 +20,7 @@
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
template <typename UC>
|
||||
fastfloat_really_inline constexpr bool has_simd_opt() {
|
||||
template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() {
|
||||
#ifdef FASTFLOAT_HAS_SIMD
|
||||
return std::is_same<UC, char16_t>::value;
|
||||
#else
|
||||
@ -37,24 +36,20 @@ fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
|
||||
}
|
||||
|
||||
fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
|
||||
return (val & 0xFF00000000000000) >> 56
|
||||
| (val & 0x00FF000000000000) >> 40
|
||||
| (val & 0x0000FF0000000000) >> 24
|
||||
| (val & 0x000000FF00000000) >> 8
|
||||
| (val & 0x00000000FF000000) << 8
|
||||
| (val & 0x0000000000FF0000) << 24
|
||||
| (val & 0x000000000000FF00) << 40
|
||||
| (val & 0x00000000000000FF) << 56;
|
||||
return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 |
|
||||
(val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 |
|
||||
(val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 |
|
||||
(val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56;
|
||||
}
|
||||
|
||||
// Read 8 UC into a u64. Truncates UC if not char.
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
uint64_t read8_to_u64(const UC *chars) {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
|
||||
read8_to_u64(UC const *chars) {
|
||||
if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
|
||||
uint64_t val = 0;
|
||||
for(int i = 0; i < 8; ++i) {
|
||||
val |= uint64_t(uint8_t(*chars)) << (i*8);
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
val |= uint64_t(uint8_t(*chars)) << (i * 8);
|
||||
++chars;
|
||||
}
|
||||
return val;
|
||||
@ -70,44 +65,41 @@ uint64_t read8_to_u64(const UC *chars) {
|
||||
|
||||
#ifdef FASTFLOAT_SSE2
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t simd_read8_to_u64(const __m128i data) {
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
const __m128i packed = _mm_packus_epi16(data, data);
|
||||
fastfloat_really_inline uint64_t simd_read8_to_u64(__m128i const data) {
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
__m128i const packed = _mm_packus_epi16(data, data);
|
||||
#ifdef FASTFLOAT_64BIT
|
||||
return uint64_t(_mm_cvtsi128_si64(packed));
|
||||
#else
|
||||
uint64_t value;
|
||||
// Visual Studio + older versions of GCC don't support _mm_storeu_si64
|
||||
_mm_storel_epi64(reinterpret_cast<__m128i*>(&value), packed);
|
||||
_mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed);
|
||||
return value;
|
||||
#endif
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t simd_read8_to_u64(const char16_t* chars) {
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
return simd_read8_to_u64(_mm_loadu_si128(reinterpret_cast<const __m128i*>(chars)));
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
fastfloat_really_inline uint64_t simd_read8_to_u64(char16_t const *chars) {
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
return simd_read8_to_u64(
|
||||
_mm_loadu_si128(reinterpret_cast<__m128i const *>(chars)));
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
}
|
||||
|
||||
#elif defined(FASTFLOAT_NEON)
|
||||
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t simd_read8_to_u64(const uint16x8_t data) {
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
fastfloat_really_inline uint64_t simd_read8_to_u64(uint16x8_t const data) {
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
uint8x8_t utf8_packed = vmovn_u16(data);
|
||||
return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t simd_read8_to_u64(const char16_t* chars) {
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
return simd_read8_to_u64(vld1q_u16(reinterpret_cast<const uint16_t*>(chars)));
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
fastfloat_really_inline uint64_t simd_read8_to_u64(char16_t const *chars) {
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
return simd_read8_to_u64(
|
||||
vld1q_u16(reinterpret_cast<uint16_t const *>(chars)));
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
}
|
||||
|
||||
#endif // FASTFLOAT_SSE2
|
||||
@ -119,101 +111,84 @@ template <typename UC>
|
||||
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
|
||||
#endif
|
||||
// dummy for compile
|
||||
uint64_t simd_read8_to_u64(UC const*) {
|
||||
uint64_t simd_read8_to_u64(UC const *) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
void write_u64(uint8_t *chars, uint64_t val) {
|
||||
if (cpp20_and_in_constexpr()) {
|
||||
for(int i = 0; i < 8; ++i) {
|
||||
*chars = uint8_t(val);
|
||||
val >>= 8;
|
||||
++chars;
|
||||
}
|
||||
return;
|
||||
}
|
||||
#if FASTFLOAT_IS_BIG_ENDIAN == 1
|
||||
// Need to read as-if the number was in little-endian order.
|
||||
val = byteswap(val);
|
||||
#endif
|
||||
::memcpy(chars, &val, sizeof(uint64_t));
|
||||
}
|
||||
|
||||
// credit @aqrit
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
||||
uint32_t parse_eight_digits_unrolled(uint64_t val) {
|
||||
const uint64_t mask = 0x000000FF000000FF;
|
||||
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
|
||||
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t
|
||||
parse_eight_digits_unrolled(uint64_t val) {
|
||||
uint64_t const mask = 0x000000FF000000FF;
|
||||
uint64_t const mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
|
||||
uint64_t const mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
|
||||
val -= 0x3030303030303030;
|
||||
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
|
||||
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
|
||||
return uint32_t(val);
|
||||
}
|
||||
|
||||
|
||||
// Call this if chars are definitely 8 digits.
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
uint32_t parse_eight_digits_unrolled(UC const * chars) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t
|
||||
parse_eight_digits_unrolled(UC const *chars) noexcept {
|
||||
if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
|
||||
return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
|
||||
}
|
||||
return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
|
||||
}
|
||||
|
||||
|
||||
// credit @aqrit
|
||||
fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
|
||||
fastfloat_really_inline constexpr bool
|
||||
is_made_of_eight_digits_fast(uint64_t val) noexcept {
|
||||
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
|
||||
0x8080808080808080));
|
||||
0x8080808080808080));
|
||||
}
|
||||
|
||||
|
||||
#ifdef FASTFLOAT_HAS_SIMD
|
||||
|
||||
// Call this if chars might not be 8 digits.
|
||||
// Using this style (instead of is_made_of_eight_digits_fast() then parse_eight_digits_unrolled())
|
||||
// ensures we don't load SIMD registers twice.
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
bool simd_parse_if_eight_digits_unrolled(const char16_t* chars, uint64_t& i) noexcept {
|
||||
// Using this style (instead of is_made_of_eight_digits_fast() then
|
||||
// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice.
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
|
||||
simd_parse_if_eight_digits_unrolled(char16_t const *chars,
|
||||
uint64_t &i) noexcept {
|
||||
if (cpp20_and_in_constexpr()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
#ifdef FASTFLOAT_SSE2
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
const __m128i data = _mm_loadu_si128(reinterpret_cast<const __m128i*>(chars));
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
__m128i const data =
|
||||
_mm_loadu_si128(reinterpret_cast<__m128i const *>(chars));
|
||||
|
||||
// (x - '0') <= 9
|
||||
// http://0x80.pl/articles/simd-parsing-int-sequences.html
|
||||
const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
|
||||
const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
|
||||
__m128i const t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
|
||||
__m128i const t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
|
||||
|
||||
if (_mm_movemask_epi8(t1) == 0) {
|
||||
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
} else
|
||||
return false;
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
#elif defined(FASTFLOAT_NEON)
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t*>(chars));
|
||||
|
||||
FASTFLOAT_SIMD_DISABLE_WARNINGS
|
||||
uint16x8_t const data = vld1q_u16(reinterpret_cast<uint16_t const *>(chars));
|
||||
|
||||
// (x - '0') <= 9
|
||||
// http://0x80.pl/articles/simd-parsing-int-sequences.html
|
||||
const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
|
||||
const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
|
||||
uint16x8_t const t0 = vsubq_u16(data, vmovq_n_u16('0'));
|
||||
uint16x8_t const mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
|
||||
|
||||
if (vminvq_u16(mask) == 0xFFFF) {
|
||||
i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
} else
|
||||
return false;
|
||||
FASTFLOAT_SIMD_RESTORE_WARNINGS
|
||||
#else
|
||||
(void)chars; (void)i;
|
||||
(void)chars;
|
||||
(void)i;
|
||||
return false;
|
||||
#endif // FASTFLOAT_SSE2
|
||||
}
|
||||
@ -227,79 +202,119 @@ template <typename UC>
|
||||
template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
|
||||
#endif
|
||||
// dummy for compile
|
||||
bool simd_parse_if_eight_digits_unrolled(UC const*, uint64_t&) {
|
||||
bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
void loop_parse_if_eight_digits(const UC*& p, const UC* const pend, uint64_t& i) {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
|
||||
loop_parse_if_eight_digits(UC const *&p, UC const *const pend, uint64_t &i) {
|
||||
if (!has_simd_opt<UC>()) {
|
||||
return;
|
||||
}
|
||||
while ((std::distance(p, pend) >= 8) && simd_parse_if_eight_digits_unrolled(p, i)) { // in rare cases, this will overflow, but that's ok
|
||||
while ((std::distance(p, pend) >= 8) &&
|
||||
simd_parse_if_eight_digits_unrolled(
|
||||
p, i)) { // in rare cases, this will overflow, but that's ok
|
||||
p += 8;
|
||||
}
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
void loop_parse_if_eight_digits(const char*& p, const char* const pend, uint64_t& i) {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
|
||||
loop_parse_if_eight_digits(char const *&p, char const *const pend,
|
||||
uint64_t &i) {
|
||||
// optimizes better than parse_if_eight_digits_unrolled() for UC = char.
|
||||
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(read8_to_u64(p))) {
|
||||
i = i * 100000000 + parse_eight_digits_unrolled(read8_to_u64(p)); // in rare cases, this will overflow, but that's ok
|
||||
while ((std::distance(p, pend) >= 8) &&
|
||||
is_made_of_eight_digits_fast(read8_to_u64(p))) {
|
||||
i = i * 100000000 +
|
||||
parse_eight_digits_unrolled(read8_to_u64(
|
||||
p)); // in rare cases, this will overflow, but that's ok
|
||||
p += 8;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename UC>
|
||||
struct parsed_number_string_t {
|
||||
enum class parse_error {
|
||||
no_error,
|
||||
// [JSON-only] The minus sign must be followed by an integer.
|
||||
missing_integer_after_sign,
|
||||
// A sign must be followed by an integer or dot.
|
||||
missing_integer_or_dot_after_sign,
|
||||
// [JSON-only] The integer part must not have leading zeros.
|
||||
leading_zeros_in_integer_part,
|
||||
// [JSON-only] The integer part must have at least one digit.
|
||||
no_digits_in_integer_part,
|
||||
// [JSON-only] If there is a decimal point, there must be digits in the
|
||||
// fractional part.
|
||||
no_digits_in_fractional_part,
|
||||
// The mantissa must have at least one digit.
|
||||
no_digits_in_mantissa,
|
||||
// Scientific notation requires an exponential part.
|
||||
missing_exponential_part,
|
||||
};
|
||||
|
||||
template <typename UC> struct parsed_number_string_t {
|
||||
int64_t exponent{0};
|
||||
uint64_t mantissa{0};
|
||||
UC const * lastmatch{nullptr};
|
||||
UC const *lastmatch{nullptr};
|
||||
bool negative{false};
|
||||
bool valid{false};
|
||||
bool too_many_digits{false};
|
||||
// contains the range of the significant digits
|
||||
span<const UC> integer{}; // non-nullable
|
||||
span<const UC> fraction{}; // nullable
|
||||
span<UC const> integer{}; // non-nullable
|
||||
span<UC const> fraction{}; // nullable
|
||||
parse_error error{parse_error::no_error};
|
||||
};
|
||||
|
||||
using byte_span = span<const char>;
|
||||
using byte_span = span<char const>;
|
||||
using parsed_number_string = parsed_number_string_t<char>;
|
||||
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
|
||||
report_parse_error(UC const *p, parse_error error) {
|
||||
parsed_number_string_t<UC> answer;
|
||||
answer.valid = false;
|
||||
answer.lastmatch = p;
|
||||
answer.error = error;
|
||||
return answer;
|
||||
}
|
||||
|
||||
// Assuming that you use no more than 19 digits, this will
|
||||
// parse an ASCII string.
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, parse_options_t<UC> options) noexcept {
|
||||
chars_format const fmt = options.format;
|
||||
template <bool basic_json_fmt, typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
|
||||
parse_number_string(UC const *p, UC const *pend,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
chars_format const fmt = detail::adjust_for_feature_macros(options.format);
|
||||
UC const decimal_point = options.decimal_point;
|
||||
|
||||
parsed_number_string_t<UC> answer;
|
||||
answer.valid = false;
|
||||
answer.too_many_digits = false;
|
||||
// assume p < pend, so dereference without checks;
|
||||
answer.negative = (*p == UC('-'));
|
||||
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
|
||||
if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) {
|
||||
#else
|
||||
if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
|
||||
#endif
|
||||
// C++17 20.19.3.(7.1) explicitly forbids '+' sign here
|
||||
if ((*p == UC('-')) || (uint64_t(fmt & chars_format::allow_leading_plus) &&
|
||||
!basic_json_fmt && *p == UC('+'))) {
|
||||
++p;
|
||||
if (p == pend) {
|
||||
return answer;
|
||||
return report_parse_error<UC>(
|
||||
p, parse_error::missing_integer_or_dot_after_sign);
|
||||
}
|
||||
if (fmt & FASTFLOAT_JSONFMT) {
|
||||
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) {
|
||||
if (!is_integer(*p)) { // a sign must be followed by an integer
|
||||
return answer;
|
||||
}
|
||||
} else {
|
||||
if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
|
||||
return answer;
|
||||
return report_parse_error<UC>(p,
|
||||
parse_error::missing_integer_after_sign);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (!is_integer(*p) &&
|
||||
(*p !=
|
||||
decimal_point)) { // a sign must be followed by an integer or the dot
|
||||
return report_parse_error<UC>(
|
||||
p, parse_error::missing_integer_or_dot_after_sign);
|
||||
}
|
||||
}
|
||||
}
|
||||
UC const * const start_digits = p;
|
||||
UC const *const start_digits = p;
|
||||
|
||||
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
|
||||
|
||||
@ -307,24 +322,29 @@ parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, par
|
||||
// a multiplication by 10 is cheaper than an arbitrary integer
|
||||
// multiplication
|
||||
i = 10 * i +
|
||||
uint64_t(*p - UC('0')); // might overflow, we will handle the overflow later
|
||||
uint64_t(*p -
|
||||
UC('0')); // might overflow, we will handle the overflow later
|
||||
++p;
|
||||
}
|
||||
UC const * const end_of_integer_part = p;
|
||||
UC const *const end_of_integer_part = p;
|
||||
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
|
||||
answer.integer = span<const UC>(start_digits, size_t(digit_count));
|
||||
if (fmt & FASTFLOAT_JSONFMT) {
|
||||
answer.integer = span<UC const>(start_digits, size_t(digit_count));
|
||||
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) {
|
||||
// at least 1 digit in integer part, without leading zeros
|
||||
if (digit_count == 0 || (start_digits[0] == UC('0') && digit_count > 1)) {
|
||||
return answer;
|
||||
if (digit_count == 0) {
|
||||
return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part);
|
||||
}
|
||||
if ((start_digits[0] == UC('0') && digit_count > 1)) {
|
||||
return report_parse_error<UC>(start_digits,
|
||||
parse_error::leading_zeros_in_integer_part);
|
||||
}
|
||||
}
|
||||
|
||||
int64_t exponent = 0;
|
||||
const bool has_decimal_point = (p != pend) && (*p == decimal_point);
|
||||
bool const has_decimal_point = (p != pend) && (*p == decimal_point);
|
||||
if (has_decimal_point) {
|
||||
++p;
|
||||
UC const * before = p;
|
||||
UC const *before = p;
|
||||
// can occur at most twice without overflowing, but let it occur more, since
|
||||
// for integers with many digits, digit parsing is the primary bottleneck.
|
||||
loop_parse_if_eight_digits(p, pend, i);
|
||||
@ -335,41 +355,45 @@ parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, par
|
||||
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
|
||||
}
|
||||
exponent = before - p;
|
||||
answer.fraction = span<const UC>(before, size_t(p - before));
|
||||
answer.fraction = span<UC const>(before, size_t(p - before));
|
||||
digit_count -= exponent;
|
||||
}
|
||||
if (fmt & FASTFLOAT_JSONFMT) {
|
||||
FASTFLOAT_IF_CONSTEXPR17(basic_json_fmt) {
|
||||
// at least 1 digit in fractional part
|
||||
if (has_decimal_point && exponent == 0) {
|
||||
return answer;
|
||||
return report_parse_error<UC>(p,
|
||||
parse_error::no_digits_in_fractional_part);
|
||||
}
|
||||
}
|
||||
else if (digit_count == 0) { // we must have encountered at least one integer!
|
||||
return answer;
|
||||
}
|
||||
int64_t exp_number = 0; // explicit exponential part
|
||||
if ( ((fmt & chars_format::scientific) &&
|
||||
(p != pend) &&
|
||||
((UC('e') == *p) || (UC('E') == *p)))
|
||||
||
|
||||
((fmt & FASTFLOAT_FORTRANFMT) &&
|
||||
(p != pend) &&
|
||||
((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || (UC('D') == *p)))) {
|
||||
UC const * location_of_e = p;
|
||||
if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || (UC('D') == *p)) {
|
||||
else if (digit_count == 0) { // we must have encountered at least one integer!
|
||||
return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa);
|
||||
}
|
||||
int64_t exp_number = 0; // explicit exponential part
|
||||
if ((uint64_t(fmt & chars_format::scientific) && (p != pend) &&
|
||||
((UC('e') == *p) || (UC('E') == *p))) ||
|
||||
(uint64_t(fmt & detail::basic_fortran_fmt) && (p != pend) &&
|
||||
((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) ||
|
||||
(UC('D') == *p)))) {
|
||||
UC const *location_of_e = p;
|
||||
if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) ||
|
||||
(UC('D') == *p)) {
|
||||
++p;
|
||||
}
|
||||
bool neg_exp = false;
|
||||
if ((p != pend) && (UC('-') == *p)) {
|
||||
neg_exp = true;
|
||||
++p;
|
||||
} else if ((p != pend) && (UC('+') == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
|
||||
} else if ((p != pend) &&
|
||||
(UC('+') ==
|
||||
*p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
|
||||
++p;
|
||||
}
|
||||
if ((p == pend) || !is_integer(*p)) {
|
||||
if(!(fmt & chars_format::fixed)) {
|
||||
// We are in error.
|
||||
return answer;
|
||||
if (!uint64_t(fmt & chars_format::fixed)) {
|
||||
// The exponential part is invalid for scientific notation, so it must
|
||||
// be a trailing token for fixed notation. However, fixed notation is
|
||||
// disabled, so report a scientific notation error.
|
||||
return report_parse_error<UC>(p, parse_error::missing_exponential_part);
|
||||
}
|
||||
// Otherwise, we will be ignoring the 'e'.
|
||||
p = location_of_e;
|
||||
@ -381,12 +405,17 @@ parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, par
|
||||
}
|
||||
++p;
|
||||
}
|
||||
if(neg_exp) { exp_number = - exp_number; }
|
||||
if (neg_exp) {
|
||||
exp_number = -exp_number;
|
||||
}
|
||||
exponent += exp_number;
|
||||
}
|
||||
} else {
|
||||
// If it scientific and not fixed, we have to bail out.
|
||||
if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
|
||||
if (uint64_t(fmt & chars_format::scientific) &&
|
||||
!uint64_t(fmt & chars_format::fixed)) {
|
||||
return report_parse_error<UC>(p, parse_error::missing_exponential_part);
|
||||
}
|
||||
}
|
||||
answer.lastmatch = p;
|
||||
answer.valid = true;
|
||||
@ -401,9 +430,11 @@ parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, par
|
||||
// We have to handle the case where we have 0.0000somenumber.
|
||||
// We need to be mindful of the case where we only have zeroes...
|
||||
// E.g., 0.000000000...000.
|
||||
UC const * start = start_digits;
|
||||
UC const *start = start_digits;
|
||||
while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
|
||||
if(*start == UC('0')) { digit_count --; }
|
||||
if (*start == UC('0')) {
|
||||
digit_count--;
|
||||
}
|
||||
start++;
|
||||
}
|
||||
|
||||
@ -414,18 +445,17 @@ parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, par
|
||||
// pre-tokenized spans from above.
|
||||
i = 0;
|
||||
p = answer.integer.ptr;
|
||||
UC const* int_end = p + answer.integer.len();
|
||||
const uint64_t minimal_nineteen_digit_integer{ 1000000000000000000 };
|
||||
UC const *int_end = p + answer.integer.len();
|
||||
uint64_t const minimal_nineteen_digit_integer{1000000000000000000};
|
||||
while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
|
||||
i = i * 10 + uint64_t(*p - UC('0'));
|
||||
++p;
|
||||
}
|
||||
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
|
||||
exponent = end_of_integer_part - p + exp_number;
|
||||
}
|
||||
else { // We have a value with a fractional component.
|
||||
} else { // We have a value with a fractional component.
|
||||
p = answer.fraction.ptr;
|
||||
UC const* frac_end = p + answer.fraction.len();
|
||||
UC const *frac_end = p + answer.fraction.len();
|
||||
while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
|
||||
i = i * 10 + uint64_t(*p - UC('0'));
|
||||
++p;
|
||||
@ -441,35 +471,43 @@ parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, par
|
||||
}
|
||||
|
||||
template <typename T, typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
from_chars_result_t<UC> parse_int_string(UC const* p, UC const* pend, T& value, int base) {
|
||||
from_chars_result_t<UC> answer;
|
||||
|
||||
UC const* const first = p;
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
parse_int_string(UC const *p, UC const *pend, T &value,
|
||||
parse_options_t<UC> options) {
|
||||
chars_format const fmt = detail::adjust_for_feature_macros(options.format);
|
||||
int const base = options.base;
|
||||
|
||||
bool negative = (*p == UC('-'));
|
||||
from_chars_result_t<UC> answer;
|
||||
|
||||
UC const *const first = p;
|
||||
|
||||
bool const negative = (*p == UC('-'));
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable : 4127)
|
||||
#endif
|
||||
if (!std::is_signed<T>::value && negative) {
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
answer.ptr = first;
|
||||
return answer;
|
||||
}
|
||||
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
|
||||
if ((*p == UC('-')) || (*p == UC('+'))) {
|
||||
#else
|
||||
if (*p == UC('-')) {
|
||||
#endif
|
||||
if ((*p == UC('-')) ||
|
||||
(uint64_t(fmt & chars_format::allow_leading_plus) && (*p == UC('+')))) {
|
||||
++p;
|
||||
}
|
||||
|
||||
UC const* const start_num = p;
|
||||
UC const *const start_num = p;
|
||||
|
||||
while (p!= pend && *p == UC('0')) {
|
||||
++p;
|
||||
while (p != pend && *p == UC('0')) {
|
||||
++p;
|
||||
}
|
||||
|
||||
const bool has_leading_zeros = p > start_num;
|
||||
bool const has_leading_zeros = p > start_num;
|
||||
|
||||
UC const* const start_digits = p;
|
||||
UC const *const start_digits = p;
|
||||
|
||||
uint64_t i = 0;
|
||||
if (base == 10) {
|
||||
@ -481,9 +519,9 @@ from_chars_result_t<UC> parse_int_string(UC const* p, UC const* pend, T& value,
|
||||
break;
|
||||
}
|
||||
i = uint64_t(base) * i + digit; // might overflow, check this later
|
||||
p++;
|
||||
p++;
|
||||
}
|
||||
|
||||
|
||||
size_t digit_count = size_t(p - start_digits);
|
||||
|
||||
if (digit_count == 0) {
|
||||
@ -491,12 +529,11 @@ from_chars_result_t<UC> parse_int_string(UC const* p, UC const* pend, T& value,
|
||||
value = 0;
|
||||
answer.ec = std::errc();
|
||||
answer.ptr = p;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
answer.ptr = first;
|
||||
}
|
||||
return answer;
|
||||
return answer;
|
||||
}
|
||||
|
||||
answer.ptr = p;
|
||||
@ -507,7 +544,8 @@ from_chars_result_t<UC> parse_int_string(UC const* p, UC const* pend, T& value,
|
||||
answer.ec = std::errc::result_out_of_range;
|
||||
return answer;
|
||||
}
|
||||
// this check can be eliminated for all other types, but they will all require a max_digits(base) equivalent
|
||||
// this check can be eliminated for all other types, but they will all require
|
||||
// a max_digits(base) equivalent
|
||||
if (digit_count == max_digits && i < min_safe_u64(base)) {
|
||||
answer.ec = std::errc::result_out_of_range;
|
||||
return answer;
|
||||
@ -524,18 +562,22 @@ from_chars_result_t<UC> parse_int_string(UC const* p, UC const* pend, T& value,
|
||||
if (negative) {
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable: 4146)
|
||||
#pragma warning(disable : 4146)
|
||||
#endif
|
||||
// this weird workaround is required because:
|
||||
// - converting unsigned to signed when its value is greater than signed max is UB pre-C++23.
|
||||
// - converting unsigned to signed when its value is greater than signed max
|
||||
// is UB pre-C++23.
|
||||
// - reinterpret_casting (~i + 1) would work, but it is not constexpr
|
||||
// this is always optimized into a neg instruction (note: T is an integer type)
|
||||
value = T(-std::numeric_limits<T>::max() - T(i - uint64_t(std::numeric_limits<T>::max())));
|
||||
// this is always optimized into a neg instruction (note: T is an integer
|
||||
// type)
|
||||
value = T(-std::numeric_limits<T>::max() -
|
||||
T(i - uint64_t(std::numeric_limits<T>::max())));
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
} else {
|
||||
value = T(i);
|
||||
}
|
||||
else { value = T(i); }
|
||||
|
||||
answer.ec = std::errc();
|
||||
return answer;
|
||||
|
||||
223
3rdparty/fast_float/include/fast_float/bigint.h
vendored
223
3rdparty/fast_float/include/fast_float/bigint.h
vendored
@ -37,15 +37,14 @@ constexpr size_t bigint_limbs = bigint_bits / limb_bits;
|
||||
|
||||
// vector-like type that is allocated on the stack. the entire
|
||||
// buffer is pre-allocated, and only the length changes.
|
||||
template <uint16_t size>
|
||||
struct stackvec {
|
||||
template <uint16_t size> struct stackvec {
|
||||
limb data[size];
|
||||
// we never need more than 150 limbs
|
||||
uint16_t length{0};
|
||||
|
||||
stackvec() = default;
|
||||
stackvec(const stackvec &) = delete;
|
||||
stackvec &operator=(const stackvec &) = delete;
|
||||
stackvec(stackvec const &) = delete;
|
||||
stackvec &operator=(stackvec const &) = delete;
|
||||
stackvec(stackvec &&) = delete;
|
||||
stackvec &operator=(stackvec &&other) = delete;
|
||||
|
||||
@ -54,16 +53,18 @@ struct stackvec {
|
||||
FASTFLOAT_ASSERT(try_extend(s));
|
||||
}
|
||||
|
||||
FASTFLOAT_CONSTEXPR14 limb& operator[](size_t index) noexcept {
|
||||
FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept {
|
||||
FASTFLOAT_DEBUG_ASSERT(index < length);
|
||||
return data[index];
|
||||
}
|
||||
FASTFLOAT_CONSTEXPR14 const limb& operator[](size_t index) const noexcept {
|
||||
|
||||
FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept {
|
||||
FASTFLOAT_DEBUG_ASSERT(index < length);
|
||||
return data[index];
|
||||
}
|
||||
|
||||
// index from the end of the container
|
||||
FASTFLOAT_CONSTEXPR14 const limb& rindex(size_t index) const noexcept {
|
||||
FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept {
|
||||
FASTFLOAT_DEBUG_ASSERT(index < length);
|
||||
size_t rindex = length - index - 1;
|
||||
return data[rindex];
|
||||
@ -73,20 +74,19 @@ struct stackvec {
|
||||
FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
|
||||
length = uint16_t(len);
|
||||
}
|
||||
constexpr size_t len() const noexcept {
|
||||
return length;
|
||||
}
|
||||
constexpr bool is_empty() const noexcept {
|
||||
return length == 0;
|
||||
}
|
||||
constexpr size_t capacity() const noexcept {
|
||||
return size;
|
||||
}
|
||||
|
||||
constexpr size_t len() const noexcept { return length; }
|
||||
|
||||
constexpr bool is_empty() const noexcept { return length == 0; }
|
||||
|
||||
constexpr size_t capacity() const noexcept { return size; }
|
||||
|
||||
// append item to vector, without bounds checking
|
||||
FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
|
||||
data[length] = value;
|
||||
length++;
|
||||
}
|
||||
|
||||
// append item to vector, returning if item was added
|
||||
FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
|
||||
if (len() < capacity()) {
|
||||
@ -96,12 +96,14 @@ struct stackvec {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// add items to the vector, from a span, without bounds checking
|
||||
FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
|
||||
limb* ptr = data + length;
|
||||
limb *ptr = data + length;
|
||||
std::copy_n(s.ptr, s.len(), ptr);
|
||||
set_len(len() + s.len());
|
||||
}
|
||||
|
||||
// try to add items to the vector, returning if items were added
|
||||
FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
|
||||
if (len() + s.len() <= capacity()) {
|
||||
@ -111,6 +113,7 @@ struct stackvec {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// resize the vector, without bounds checking
|
||||
// if the new size is longer than the vector, assign value to each
|
||||
// appended item.
|
||||
@ -118,14 +121,15 @@ struct stackvec {
|
||||
void resize_unchecked(size_t new_len, limb value) noexcept {
|
||||
if (new_len > len()) {
|
||||
size_t count = new_len - len();
|
||||
limb* first = data + len();
|
||||
limb* last = first + count;
|
||||
limb *first = data + len();
|
||||
limb *last = first + count;
|
||||
::std::fill(first, last, value);
|
||||
set_len(new_len);
|
||||
} else {
|
||||
set_len(new_len);
|
||||
}
|
||||
}
|
||||
|
||||
// try to resize the vector, returning if the vector was resized.
|
||||
FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
|
||||
if (new_len > capacity()) {
|
||||
@ -135,6 +139,7 @@ struct stackvec {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// check if any limbs are non-zero after the given index.
|
||||
// this needs to be done in reverse order, since the index
|
||||
// is relative to the most significant limbs.
|
||||
@ -147,6 +152,7 @@ struct stackvec {
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// normalize the big integer, so most-significant zero limbs are removed.
|
||||
FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
|
||||
while (len() > 0 && rindex(0) == 0) {
|
||||
@ -155,21 +161,21 @@ struct stackvec {
|
||||
}
|
||||
};
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
||||
uint64_t empty_hi64(bool& truncated) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
|
||||
empty_hi64(bool &truncated) noexcept {
|
||||
truncated = false;
|
||||
return 0;
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
|
||||
uint64_hi64(uint64_t r0, bool &truncated) noexcept {
|
||||
truncated = false;
|
||||
int shl = leading_zeroes(r0);
|
||||
return r0 << shl;
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
|
||||
uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept {
|
||||
int shl = leading_zeroes(r0);
|
||||
if (shl == 0) {
|
||||
truncated = r1 != 0;
|
||||
@ -181,20 +187,20 @@ uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept {
|
||||
}
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
|
||||
uint32_hi64(uint32_t r0, bool &truncated) noexcept {
|
||||
return uint64_hi64(r0, truncated);
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
|
||||
uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept {
|
||||
uint64_t x0 = r0;
|
||||
uint64_t x1 = r1;
|
||||
return uint64_hi64((x0 << 32) | x1, truncated);
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
|
||||
uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept {
|
||||
uint64_t x0 = r0;
|
||||
uint64_t x1 = r1;
|
||||
uint64_t x2 = r2;
|
||||
@ -205,17 +211,17 @@ uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noe
|
||||
// we want an efficient operation. for msvc, where
|
||||
// we don't have built-in intrinsics, this is still
|
||||
// pretty fast.
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
limb scalar_add(limb x, limb y, bool& overflow) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
|
||||
scalar_add(limb x, limb y, bool &overflow) noexcept {
|
||||
limb z;
|
||||
// gcc and clang
|
||||
#if defined(__has_builtin)
|
||||
#if __has_builtin(__builtin_add_overflow)
|
||||
if (!cpp20_and_in_constexpr()) {
|
||||
overflow = __builtin_add_overflow(x, y, &z);
|
||||
return z;
|
||||
}
|
||||
#endif
|
||||
#if __has_builtin(__builtin_add_overflow)
|
||||
if (!cpp20_and_in_constexpr()) {
|
||||
overflow = __builtin_add_overflow(x, y, &z);
|
||||
return z;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// generic, this still optimizes correctly on MSVC.
|
||||
@ -225,24 +231,24 @@ limb scalar_add(limb x, limb y, bool& overflow) noexcept {
|
||||
}
|
||||
|
||||
// multiply two small integers, getting both the high and low bits.
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
limb scalar_mul(limb x, limb y, limb& carry) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
|
||||
scalar_mul(limb x, limb y, limb &carry) noexcept {
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
#if defined(__SIZEOF_INT128__)
|
||||
#if defined(__SIZEOF_INT128__)
|
||||
// GCC and clang both define it as an extension.
|
||||
__uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
|
||||
carry = limb(z >> limb_bits);
|
||||
return limb(z);
|
||||
#else
|
||||
#else
|
||||
// fallback, no native 128-bit integer multiplication with carry.
|
||||
// on msvc, this optimizes identically, somehow.
|
||||
value128 z = full_multiplication(x, y);
|
||||
bool overflow;
|
||||
z.low = scalar_add(z.low, carry, overflow);
|
||||
z.high += uint64_t(overflow); // cannot overflow
|
||||
z.high += uint64_t(overflow); // cannot overflow
|
||||
carry = z.high;
|
||||
return z.low;
|
||||
#endif
|
||||
#endif
|
||||
#else
|
||||
uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
|
||||
carry = limb(z >> limb_bits);
|
||||
@ -253,8 +259,8 @@ limb scalar_mul(limb x, limb y, limb& carry) noexcept {
|
||||
// add scalar value to bigint starting from offset.
|
||||
// used in grade school multiplication
|
||||
template <uint16_t size>
|
||||
inline FASTFLOAT_CONSTEXPR20
|
||||
bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept {
|
||||
inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y,
|
||||
size_t start) noexcept {
|
||||
size_t index = start;
|
||||
limb carry = y;
|
||||
bool overflow;
|
||||
@ -271,15 +277,15 @@ bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept {
|
||||
|
||||
// add scalar value to bigint.
|
||||
template <uint16_t size>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
bool small_add(stackvec<size>& vec, limb y) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
|
||||
small_add(stackvec<size> &vec, limb y) noexcept {
|
||||
return small_add_from(vec, y, 0);
|
||||
}
|
||||
|
||||
// multiply bigint by scalar value.
|
||||
template <uint16_t size>
|
||||
inline FASTFLOAT_CONSTEXPR20
|
||||
bool small_mul(stackvec<size>& vec, limb y) noexcept {
|
||||
inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec,
|
||||
limb y) noexcept {
|
||||
limb carry = 0;
|
||||
for (size_t index = 0; index < vec.len(); index++) {
|
||||
vec[index] = scalar_mul(vec[index], y, carry);
|
||||
@ -293,12 +299,12 @@ bool small_mul(stackvec<size>& vec, limb y) noexcept {
|
||||
// add bigint to bigint starting from index.
|
||||
// used in grade school multiplication
|
||||
template <uint16_t size>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept {
|
||||
FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y,
|
||||
size_t start) noexcept {
|
||||
// the effective x buffer is from `xstart..x.len()`, so exit early
|
||||
// if we can't get that current range.
|
||||
if (x.len() < start || y.len() > x.len() - start) {
|
||||
FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
|
||||
FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
|
||||
}
|
||||
|
||||
bool carry = false;
|
||||
@ -324,15 +330,14 @@ bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept {
|
||||
|
||||
// add bigint to bigint.
|
||||
template <uint16_t size>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
bool large_add_from(stackvec<size>& x, limb_span y) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
|
||||
large_add_from(stackvec<size> &x, limb_span y) noexcept {
|
||||
return large_add_from(x, y, 0);
|
||||
}
|
||||
|
||||
// grade-school multiplication algorithm
|
||||
template <uint16_t size>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
bool long_mul(stackvec<size>& x, limb_span y) noexcept {
|
||||
FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept {
|
||||
limb_span xs = limb_span(x.data, x.len());
|
||||
stackvec<size> z(xs);
|
||||
limb_span zs = limb_span(z.data, z.len());
|
||||
@ -360,8 +365,7 @@ bool long_mul(stackvec<size>& x, limb_span y) noexcept {
|
||||
|
||||
// grade-school multiplication algorithm
|
||||
template <uint16_t size>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
bool large_mul(stackvec<size>& x, limb_span y) noexcept {
|
||||
FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept {
|
||||
if (y.len() == 1) {
|
||||
FASTFLOAT_TRY(small_mul(x, y[0]));
|
||||
} else {
|
||||
@ -370,36 +374,58 @@ bool large_mul(stackvec<size>& x, limb_span y) noexcept {
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename = void>
|
||||
struct pow5_tables {
|
||||
template <typename = void> struct pow5_tables {
|
||||
static constexpr uint32_t large_step = 135;
|
||||
static constexpr uint64_t small_power_of_5[] = {
|
||||
1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL,
|
||||
1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL,
|
||||
6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL,
|
||||
3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL,
|
||||
2384185791015625UL, 11920928955078125UL, 59604644775390625UL,
|
||||
298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL,
|
||||
1UL,
|
||||
5UL,
|
||||
25UL,
|
||||
125UL,
|
||||
625UL,
|
||||
3125UL,
|
||||
15625UL,
|
||||
78125UL,
|
||||
390625UL,
|
||||
1953125UL,
|
||||
9765625UL,
|
||||
48828125UL,
|
||||
244140625UL,
|
||||
1220703125UL,
|
||||
6103515625UL,
|
||||
30517578125UL,
|
||||
152587890625UL,
|
||||
762939453125UL,
|
||||
3814697265625UL,
|
||||
19073486328125UL,
|
||||
95367431640625UL,
|
||||
476837158203125UL,
|
||||
2384185791015625UL,
|
||||
11920928955078125UL,
|
||||
59604644775390625UL,
|
||||
298023223876953125UL,
|
||||
1490116119384765625UL,
|
||||
7450580596923828125UL,
|
||||
};
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
constexpr static limb large_power_of_5[] = {
|
||||
1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
|
||||
10482974169319127550UL, 198276706040285095UL};
|
||||
1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
|
||||
10482974169319127550UL, 198276706040285095UL};
|
||||
#else
|
||||
constexpr static limb large_power_of_5[] = {
|
||||
4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
|
||||
1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
|
||||
4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
|
||||
1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
|
||||
#endif
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
constexpr uint32_t pow5_tables<T>::large_step;
|
||||
#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
|
||||
|
||||
template <typename T>
|
||||
constexpr uint64_t pow5_tables<T>::small_power_of_5[];
|
||||
template <typename T> constexpr uint32_t pow5_tables<T>::large_step;
|
||||
|
||||
template <typename T>
|
||||
constexpr limb pow5_tables<T>::large_power_of_5[];
|
||||
template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[];
|
||||
|
||||
template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[];
|
||||
|
||||
#endif
|
||||
|
||||
// big integer type. implements a small subset of big integer
|
||||
// arithmetic, using simple algorithms since asymptotically
|
||||
@ -409,13 +435,14 @@ struct bigint : pow5_tables<> {
|
||||
// storage of the limbs, in little-endian order.
|
||||
stackvec<bigint_limbs> vec;
|
||||
|
||||
FASTFLOAT_CONSTEXPR20 bigint(): vec() {}
|
||||
bigint(const bigint &) = delete;
|
||||
bigint &operator=(const bigint &) = delete;
|
||||
FASTFLOAT_CONSTEXPR20 bigint() : vec() {}
|
||||
|
||||
bigint(bigint const &) = delete;
|
||||
bigint &operator=(bigint const &) = delete;
|
||||
bigint(bigint &&) = delete;
|
||||
bigint &operator=(bigint &&other) = delete;
|
||||
|
||||
FASTFLOAT_CONSTEXPR20 bigint(uint64_t value): vec() {
|
||||
FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() {
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
vec.push_unchecked(value);
|
||||
#else
|
||||
@ -427,7 +454,7 @@ struct bigint : pow5_tables<> {
|
||||
|
||||
// get the high 64 bits from the vector, and if bits were truncated.
|
||||
// this is to get the significant digits for the float.
|
||||
FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool& truncated) const noexcept {
|
||||
FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept {
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
if (vec.len() == 0) {
|
||||
return empty_hi64(truncated);
|
||||
@ -446,7 +473,8 @@ struct bigint : pow5_tables<> {
|
||||
} else if (vec.len() == 2) {
|
||||
return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
|
||||
} else {
|
||||
uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
|
||||
uint64_t result =
|
||||
uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
|
||||
truncated |= vec.nonzero(3);
|
||||
return result;
|
||||
}
|
||||
@ -459,7 +487,7 @@ struct bigint : pow5_tables<> {
|
||||
// positive, this is larger, otherwise they are equal.
|
||||
// the limbs are stored in little-endian order, so we
|
||||
// must compare the limbs in ever order.
|
||||
FASTFLOAT_CONSTEXPR20 int compare(const bigint& other) const noexcept {
|
||||
FASTFLOAT_CONSTEXPR20 int compare(bigint const &other) const noexcept {
|
||||
if (vec.len() > other.vec.len()) {
|
||||
return 1;
|
||||
} else if (vec.len() < other.vec.len()) {
|
||||
@ -512,12 +540,12 @@ struct bigint : pow5_tables<> {
|
||||
return false;
|
||||
} else if (!vec.is_empty()) {
|
||||
// move limbs
|
||||
limb* dst = vec.data + n;
|
||||
const limb* src = vec.data;
|
||||
limb *dst = vec.data + n;
|
||||
limb const *src = vec.data;
|
||||
std::copy_backward(src, src + vec.len(), dst + vec.len());
|
||||
// fill in empty limbs
|
||||
limb* first = vec.data;
|
||||
limb* last = first + n;
|
||||
limb *first = vec.data;
|
||||
limb *last = first + n;
|
||||
::std::fill(first, last, 0);
|
||||
vec.set_len(n + vec.len());
|
||||
return true;
|
||||
@ -560,18 +588,12 @@ struct bigint : pow5_tables<> {
|
||||
return int(limb_bits * vec.len()) - lz;
|
||||
}
|
||||
|
||||
FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept {
|
||||
return small_mul(vec, y);
|
||||
}
|
||||
FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); }
|
||||
|
||||
FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept {
|
||||
return small_add(vec, y);
|
||||
}
|
||||
FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); }
|
||||
|
||||
// multiply as if by 2 raised to a power.
|
||||
FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept {
|
||||
return shl(exp);
|
||||
}
|
||||
FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); }
|
||||
|
||||
// multiply as if by 5 raised to a power.
|
||||
FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
|
||||
@ -597,9 +619,8 @@ struct bigint : pow5_tables<> {
|
||||
// Work around clang bug https://godbolt.org/z/zedh7rrhc
|
||||
// This is similar to https://github.com/llvm/llvm-project/issues/47746,
|
||||
// except the workaround described there don't work here
|
||||
FASTFLOAT_TRY(
|
||||
small_mul(vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))
|
||||
);
|
||||
FASTFLOAT_TRY(small_mul(
|
||||
vec, limb(((void)small_power_of_5[0], small_power_of_5[exp]))));
|
||||
}
|
||||
|
||||
return true;
|
||||
|
||||
@ -8,7 +8,7 @@
|
||||
#endif
|
||||
|
||||
// Testing for https://wg21.link/N3652, adopted in C++14
|
||||
#if __cpp_constexpr >= 201304
|
||||
#if defined(__cpp_constexpr) && __cpp_constexpr >= 201304
|
||||
#define FASTFLOAT_CONSTEXPR14 constexpr
|
||||
#else
|
||||
#define FASTFLOAT_CONSTEXPR14
|
||||
@ -20,16 +20,23 @@
|
||||
#define FASTFLOAT_HAS_BIT_CAST 0
|
||||
#endif
|
||||
|
||||
#if defined(__cpp_lib_is_constant_evaluated) && __cpp_lib_is_constant_evaluated >= 201811L
|
||||
#if defined(__cpp_lib_is_constant_evaluated) && \
|
||||
__cpp_lib_is_constant_evaluated >= 201811L
|
||||
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
|
||||
#else
|
||||
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
|
||||
#endif
|
||||
|
||||
#if defined(__cpp_if_constexpr) && __cpp_if_constexpr >= 201606L
|
||||
#define FASTFLOAT_IF_CONSTEXPR17(x) if constexpr (x)
|
||||
#else
|
||||
#define FASTFLOAT_IF_CONSTEXPR17(x) if (x)
|
||||
#endif
|
||||
|
||||
// Testing for relevant C++20 constexpr library features
|
||||
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED \
|
||||
&& FASTFLOAT_HAS_BIT_CAST \
|
||||
&& __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
|
||||
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \
|
||||
defined(__cpp_lib_constexpr_algorithms) && \
|
||||
__cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
|
||||
#define FASTFLOAT_CONSTEXPR20 constexpr
|
||||
#define FASTFLOAT_IS_CONSTEXPR 1
|
||||
#else
|
||||
@ -37,4 +44,10 @@
|
||||
#define FASTFLOAT_IS_CONSTEXPR 0
|
||||
#endif
|
||||
|
||||
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
|
||||
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0
|
||||
#else
|
||||
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1
|
||||
#endif
|
||||
|
||||
#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
|
||||
|
||||
@ -12,27 +12,34 @@
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating
|
||||
// the result, with the "high" part corresponding to the most significant bits and the
|
||||
// low part corresponding to the least significant bits.
|
||||
// This will compute or rather approximate w * 5**q and return a pair of 64-bit
|
||||
// words approximating the result, with the "high" part corresponding to the
|
||||
// most significant bits and the low part corresponding to the least significant
|
||||
// bits.
|
||||
//
|
||||
template <int bit_precision>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
value128 compute_product_approximation(int64_t q, uint64_t w) {
|
||||
const int index = 2 * int(q - powers::smallest_power_of_five);
|
||||
// For small values of q, e.g., q in [0,27], the answer is always exact because
|
||||
// The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]);
|
||||
// gives the exact answer.
|
||||
value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]);
|
||||
static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]");
|
||||
constexpr uint64_t precision_mask = (bit_precision < 64) ?
|
||||
(uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
|
||||
: uint64_t(0xFFFFFFFFFFFFFFFF);
|
||||
if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower)
|
||||
// regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed.
|
||||
value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]);
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
|
||||
compute_product_approximation(int64_t q, uint64_t w) {
|
||||
int const index = 2 * int(q - powers::smallest_power_of_five);
|
||||
// For small values of q, e.g., q in [0,27], the answer is always exact
|
||||
// because The line value128 firstproduct = full_multiplication(w,
|
||||
// power_of_five_128[index]); gives the exact answer.
|
||||
value128 firstproduct =
|
||||
full_multiplication(w, powers::power_of_five_128[index]);
|
||||
static_assert((bit_precision >= 0) && (bit_precision <= 64),
|
||||
" precision should be in (0,64]");
|
||||
constexpr uint64_t precision_mask =
|
||||
(bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
|
||||
: uint64_t(0xFFFFFFFFFFFFFFFF);
|
||||
if ((firstproduct.high & precision_mask) ==
|
||||
precision_mask) { // could further guard with (lower + w < lower)
|
||||
// regarding the second product, we only need secondproduct.high, but our
|
||||
// expectation is that the compiler will optimize this extra work away if
|
||||
// needed.
|
||||
value128 secondproduct =
|
||||
full_multiplication(w, powers::power_of_five_128[index + 1]);
|
||||
firstproduct.low += secondproduct.high;
|
||||
if(secondproduct.high > firstproduct.low) {
|
||||
if (secondproduct.high > firstproduct.low) {
|
||||
firstproduct.high++;
|
||||
}
|
||||
}
|
||||
@ -55,43 +62,45 @@ namespace detail {
|
||||
* where
|
||||
* p = log(5**-q)/log(2) = -q * log(5)/log(2)
|
||||
*/
|
||||
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
|
||||
return (((152170 + 65536) * q) >> 16) + 63;
|
||||
}
|
||||
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
|
||||
return (((152170 + 65536) * q) >> 16) + 63;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
// create an adjusted mantissa, biased by the invalid power2
|
||||
// for significant digits already multiplied by 10 ** q.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
||||
adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa
|
||||
compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
|
||||
int hilz = int(w >> 63) ^ 1;
|
||||
adjusted_mantissa answer;
|
||||
answer.mantissa = w << hilz;
|
||||
int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias);
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 +
|
||||
invalid_am_bias);
|
||||
return answer;
|
||||
}
|
||||
|
||||
// w * 10 ** q, without rounding the representation up.
|
||||
// the power2 in the exponent will be adjusted by invalid_am_bias.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
|
||||
compute_error(int64_t q, uint64_t w) noexcept {
|
||||
int lz = leading_zeroes(w);
|
||||
w <<= lz;
|
||||
value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
|
||||
value128 product =
|
||||
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
|
||||
return compute_error_scaled<binary>(q, product.high, lz);
|
||||
}
|
||||
|
||||
// w * 10 ** q
|
||||
// The returned value should be a valid ieee64 number that simply need to be packed.
|
||||
// However, in some very rare cases, the computation will fail. In such cases, we
|
||||
// return an adjusted_mantissa with a negative power of 2: the caller should recompute
|
||||
// in such cases.
|
||||
// Computers w * 10 ** q.
|
||||
// The returned value should be a valid number that simply needs to be
|
||||
// packed. However, in some very rare cases, the computation will fail. In such
|
||||
// cases, we return an adjusted_mantissa with a negative power of 2: the caller
|
||||
// should recompute in such cases.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
|
||||
compute_float(int64_t q, uint64_t w) noexcept {
|
||||
adjusted_mantissa answer;
|
||||
if ((w == 0) || (q < binary::smallest_power_of_ten())) {
|
||||
answer.power2 = 0;
|
||||
@ -105,7 +114,8 @@ adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
// At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five].
|
||||
// At this point in time q is in [powers::smallest_power_of_five,
|
||||
// powers::largest_power_of_five].
|
||||
|
||||
// We want the most significant bit of i to be 1. Shift if needed.
|
||||
int lz = leading_zeroes(w);
|
||||
@ -114,26 +124,32 @@ adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
// The required precision is binary::mantissa_explicit_bits() + 3 because
|
||||
// 1. We need the implicit bit
|
||||
// 2. We need an extra bit for rounding purposes
|
||||
// 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift)
|
||||
// 3. We might lose a bit due to the "upperbit" routine (result too small,
|
||||
// requiring a shift)
|
||||
|
||||
value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
|
||||
value128 product =
|
||||
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
|
||||
// The computed 'product' is always sufficient.
|
||||
// Mathematical proof:
|
||||
// Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to appear)
|
||||
// See script/mushtak_lemire.py
|
||||
// Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to
|
||||
// appear) See script/mushtak_lemire.py
|
||||
|
||||
// The "compute_product_approximation" function can be slightly slower than a branchless approach:
|
||||
// value128 product = compute_product(q, w);
|
||||
// but in practice, we can win big with the compute_product_approximation if its additional branch
|
||||
// is easily predicted. Which is best is data specific.
|
||||
// The "compute_product_approximation" function can be slightly slower than a
|
||||
// branchless approach: value128 product = compute_product(q, w); but in
|
||||
// practice, we can win big with the compute_product_approximation if its
|
||||
// additional branch is easily predicted. Which is best is data specific.
|
||||
int upperbit = int(product.high >> 63);
|
||||
int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;
|
||||
|
||||
answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
|
||||
answer.mantissa = product.high >> shift;
|
||||
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent());
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz -
|
||||
binary::minimum_exponent());
|
||||
if (answer.power2 <= 0) { // we have a subnormal?
|
||||
// Here have that answer.power2 <= 0 so -answer.power2 >= 0
|
||||
if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure.
|
||||
if (-answer.power2 + 1 >=
|
||||
64) { // if we have more than 64 bits below the minimum exponent, you
|
||||
// have a zero for sure.
|
||||
answer.power2 = 0;
|
||||
answer.mantissa = 0;
|
||||
// result should be zero
|
||||
@ -142,7 +158,8 @@ adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
// next line is safe because -answer.power2 + 1 < 64
|
||||
answer.mantissa >>= -answer.power2 + 1;
|
||||
// Thankfully, we can't have both "round-to-even" and subnormals because
|
||||
// "round-to-even" only occurs for powers close to 0.
|
||||
// "round-to-even" only occurs for powers close to 0 in the 32-bit and
|
||||
// and 64-bit case (with no more than 19 digits).
|
||||
answer.mantissa += (answer.mantissa & 1); // round up
|
||||
answer.mantissa >>= 1;
|
||||
// There is a weird scenario where we don't have a subnormal but just.
|
||||
@ -152,20 +169,26 @@ adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
// up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
|
||||
// subnormal, but we can only know this after rounding.
|
||||
// So we only declare a subnormal if we are smaller than the threshold.
|
||||
answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1;
|
||||
answer.power2 =
|
||||
(answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits()))
|
||||
? 0
|
||||
: 1;
|
||||
return answer;
|
||||
}
|
||||
|
||||
// usually, we round *up*, but if we fall right in between and and we have an
|
||||
// even basis, we need to round down
|
||||
// We are only concerned with the cases where 5**q fits in single 64-bit word.
|
||||
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) &&
|
||||
((answer.mantissa & 3) == 1) ) { // we may fall between two floats!
|
||||
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) &&
|
||||
(q <= binary::max_exponent_round_to_even()) &&
|
||||
((answer.mantissa & 3) == 1)) { // we may fall between two floats!
|
||||
// To be in-between two floats we need that in doing
|
||||
// answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
|
||||
// ... we dropped out only zeroes. But if this happened, then we can go back!!!
|
||||
if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) {
|
||||
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
|
||||
// answer.mantissa = product.high >> (upperbit + 64 -
|
||||
// binary::mantissa_explicit_bits() - 3);
|
||||
// ... we dropped out only zeroes. But if this happened, then we can go
|
||||
// back!!!
|
||||
if ((answer.mantissa << shift) == product.high) {
|
||||
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -13,19 +13,34 @@
|
||||
namespace fast_float {
|
||||
|
||||
// 1e0 to 1e19
|
||||
constexpr static uint64_t powers_of_ten_uint64[] = {
|
||||
1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
|
||||
1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
|
||||
100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
|
||||
1000000000000000000UL, 10000000000000000000UL};
|
||||
constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
|
||||
10UL,
|
||||
100UL,
|
||||
1000UL,
|
||||
10000UL,
|
||||
100000UL,
|
||||
1000000UL,
|
||||
10000000UL,
|
||||
100000000UL,
|
||||
1000000000UL,
|
||||
10000000000UL,
|
||||
100000000000UL,
|
||||
1000000000000UL,
|
||||
10000000000000UL,
|
||||
100000000000000UL,
|
||||
1000000000000000UL,
|
||||
10000000000000000UL,
|
||||
100000000000000000UL,
|
||||
1000000000000000000UL,
|
||||
10000000000000000000UL};
|
||||
|
||||
// calculate the exponent, in scientific notation, of the number.
|
||||
// this algorithm is not even close to optimized, but it has no practical
|
||||
// effect on performance: in order to have a faster algorithm, we'd need
|
||||
// to slow down performance for faster algorithms, and this is still fast.
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
||||
int32_t scientific_exponent(parsed_number_string_t<UC> & num) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
|
||||
scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
|
||||
uint64_t mantissa = num.mantissa;
|
||||
int32_t exponent = int32_t(num.exponent);
|
||||
while (mantissa >= 10000) {
|
||||
@ -45,15 +60,16 @@ int32_t scientific_exponent(parsed_number_string_t<UC> & num) noexcept {
|
||||
|
||||
// this converts a native floating-point number to an extended-precision float.
|
||||
template <typename T>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
adjusted_mantissa to_extended(T value) noexcept {
|
||||
using equiv_uint = typename binary_format<T>::equiv_uint;
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
|
||||
to_extended(T value) noexcept {
|
||||
using equiv_uint = equiv_uint_t<T>;
|
||||
constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
|
||||
constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
|
||||
constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
|
||||
|
||||
adjusted_mantissa am;
|
||||
int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
|
||||
int32_t bias = binary_format<T>::mantissa_explicit_bits() -
|
||||
binary_format<T>::minimum_exponent();
|
||||
equiv_uint bits;
|
||||
#if FASTFLOAT_HAS_BIT_CAST
|
||||
bits = std::bit_cast<equiv_uint>(value);
|
||||
@ -66,7 +82,8 @@ adjusted_mantissa to_extended(T value) noexcept {
|
||||
am.mantissa = bits & mantissa_mask;
|
||||
} else {
|
||||
// normal
|
||||
am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
|
||||
am.power2 = int32_t((bits & exponent_mask) >>
|
||||
binary_format<T>::mantissa_explicit_bits());
|
||||
am.power2 -= bias;
|
||||
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
|
||||
}
|
||||
@ -78,8 +95,8 @@ adjusted_mantissa to_extended(T value) noexcept {
|
||||
// we are given a native float that represents b, so we need to adjust it
|
||||
// halfway between b and b+u.
|
||||
template <typename T>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
adjusted_mantissa to_extended_halfway(T value) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
|
||||
to_extended_halfway(T value) noexcept {
|
||||
adjusted_mantissa am = to_extended(value);
|
||||
am.mantissa <<= 1;
|
||||
am.mantissa += 1;
|
||||
@ -89,15 +106,18 @@ adjusted_mantissa to_extended_halfway(T value) noexcept {
|
||||
|
||||
// round an extended-precision float to the nearest machine float.
|
||||
template <typename T, typename callback>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
||||
void round(adjusted_mantissa& am, callback cb) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
|
||||
callback cb) noexcept {
|
||||
int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
|
||||
if (-am.power2 >= mantissa_shift) {
|
||||
// have a denormal float
|
||||
int32_t shift = -am.power2 + 1;
|
||||
cb(am, std::min<int32_t>(shift, 64));
|
||||
// check for round-up: if rounding-nearest carried us to the hidden bit.
|
||||
am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
|
||||
am.power2 = (am.mantissa <
|
||||
(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()))
|
||||
? 0
|
||||
: 1;
|
||||
return;
|
||||
}
|
||||
|
||||
@ -105,7 +125,8 @@ void round(adjusted_mantissa& am, callback cb) noexcept {
|
||||
cb(am, mantissa_shift);
|
||||
|
||||
// check for carry
|
||||
if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
|
||||
if (am.mantissa >=
|
||||
(uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
|
||||
am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
|
||||
am.power2++;
|
||||
}
|
||||
@ -119,16 +140,11 @@ void round(adjusted_mantissa& am, callback cb) noexcept {
|
||||
}
|
||||
|
||||
template <typename callback>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
||||
void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
|
||||
const uint64_t mask
|
||||
= (shift == 64)
|
||||
? UINT64_MAX
|
||||
: (uint64_t(1) << shift) - 1;
|
||||
const uint64_t halfway
|
||||
= (shift == 0)
|
||||
? 0
|
||||
: uint64_t(1) << (shift - 1);
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
|
||||
round_nearest_tie_even(adjusted_mantissa &am, int32_t shift,
|
||||
callback cb) noexcept {
|
||||
uint64_t const mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1;
|
||||
uint64_t const halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1);
|
||||
uint64_t truncated_bits = am.mantissa & mask;
|
||||
bool is_above = truncated_bits > halfway;
|
||||
bool is_halfway = truncated_bits == halfway;
|
||||
@ -145,8 +161,8 @@ void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) n
|
||||
am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
||||
void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
|
||||
round_down(adjusted_mantissa &am, int32_t shift) noexcept {
|
||||
if (shift == 64) {
|
||||
am.mantissa = 0;
|
||||
} else {
|
||||
@ -154,11 +170,13 @@ void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
|
||||
}
|
||||
am.power2 += shift;
|
||||
}
|
||||
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
void skip_zeros(UC const * & first, UC const * last) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
|
||||
skip_zeros(UC const *&first, UC const *last) noexcept {
|
||||
uint64_t val;
|
||||
while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
|
||||
while (!cpp20_and_in_constexpr() &&
|
||||
std::distance(first, last) >= int_cmp_len<UC>()) {
|
||||
::memcpy(&val, first, sizeof(uint64_t));
|
||||
if (val != int_cmp_zeros<UC>()) {
|
||||
break;
|
||||
@ -176,11 +194,12 @@ void skip_zeros(UC const * & first, UC const * last) noexcept {
|
||||
// determine if any non-zero digits were truncated.
|
||||
// all characters must be valid digits.
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
bool is_truncated(UC const * first, UC const * last) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
|
||||
is_truncated(UC const *first, UC const *last) noexcept {
|
||||
// do 8-bit optimizations, can just compare to 8 literal 0s.
|
||||
uint64_t val;
|
||||
while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
|
||||
while (!cpp20_and_in_constexpr() &&
|
||||
std::distance(first, last) >= int_cmp_len<UC>()) {
|
||||
::memcpy(&val, first, sizeof(uint64_t));
|
||||
if (val != int_cmp_zeros<UC>()) {
|
||||
return true;
|
||||
@ -195,16 +214,17 @@ bool is_truncated(UC const * first, UC const * last) noexcept {
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
bool is_truncated(span<const UC> s) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
|
||||
is_truncated(span<UC const> s) noexcept {
|
||||
return is_truncated(s.ptr, s.ptr + s.len());
|
||||
}
|
||||
|
||||
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
void parse_eight_digits(const UC*& p, limb& value, size_t& counter, size_t& count) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
|
||||
parse_eight_digits(UC const *&p, limb &value, size_t &counter,
|
||||
size_t &count) noexcept {
|
||||
value = value * 100000000 + parse_eight_digits_unrolled(p);
|
||||
p += 8;
|
||||
counter += 8;
|
||||
@ -212,22 +232,23 @@ void parse_eight_digits(const UC*& p, limb& value, size_t& counter, size_t& coun
|
||||
}
|
||||
|
||||
template <typename UC>
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
|
||||
void parse_one_digit(UC const *& p, limb& value, size_t& counter, size_t& count) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
|
||||
parse_one_digit(UC const *&p, limb &value, size_t &counter,
|
||||
size_t &count) noexcept {
|
||||
value = value * 10 + limb(*p - UC('0'));
|
||||
p++;
|
||||
counter++;
|
||||
count++;
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
void add_native(bigint& big, limb power, limb value) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
|
||||
add_native(bigint &big, limb power, limb value) noexcept {
|
||||
big.mul(power);
|
||||
big.add(value);
|
||||
}
|
||||
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
|
||||
void round_up_bigint(bigint& big, size_t& count) noexcept {
|
||||
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
|
||||
round_up_bigint(bigint &big, size_t &count) noexcept {
|
||||
// need to round-up the digits, but need to avoid rounding
|
||||
// ....9999 to ...10000, which could cause a false halfway point.
|
||||
add_native(big, 10, 1);
|
||||
@ -236,8 +257,9 @@ void round_up_bigint(bigint& big, size_t& count) noexcept {
|
||||
|
||||
// parse the significant digits into a big integer
|
||||
template <typename UC>
|
||||
inline FASTFLOAT_CONSTEXPR20
|
||||
void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_digits, size_t& digits) noexcept {
|
||||
inline FASTFLOAT_CONSTEXPR20 void
|
||||
parse_mantissa(bigint &result, parsed_number_string_t<UC> &num,
|
||||
size_t max_digits, size_t &digits) noexcept {
|
||||
// try to minimize the number of big integer and scalar multiplication.
|
||||
// therefore, try to parse 8 digits at a time, and multiply by the largest
|
||||
// scalar value (9 or 19 digits) for each step.
|
||||
@ -251,12 +273,13 @@ void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_
|
||||
#endif
|
||||
|
||||
// process all integer digits.
|
||||
UC const * p = num.integer.ptr;
|
||||
UC const * pend = p + num.integer.len();
|
||||
UC const *p = num.integer.ptr;
|
||||
UC const *pend = p + num.integer.len();
|
||||
skip_zeros(p, pend);
|
||||
// process all digits, in increments of step per loop
|
||||
while (p != pend) {
|
||||
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
|
||||
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
|
||||
(max_digits - digits >= 8)) {
|
||||
parse_eight_digits(p, value, counter, digits);
|
||||
}
|
||||
while (counter < step && p != pend && digits < max_digits) {
|
||||
@ -289,7 +312,8 @@ void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_
|
||||
}
|
||||
// process all digits, in increments of step per loop
|
||||
while (p != pend) {
|
||||
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
|
||||
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
|
||||
(max_digits - digits >= 8)) {
|
||||
parse_eight_digits(p, value, counter, digits);
|
||||
}
|
||||
while (counter < step && p != pend && digits < max_digits) {
|
||||
@ -317,19 +341,23 @@ void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline FASTFLOAT_CONSTEXPR20
|
||||
adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
|
||||
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
|
||||
positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept {
|
||||
FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
|
||||
adjusted_mantissa answer;
|
||||
bool truncated;
|
||||
answer.mantissa = bigmant.hi64(truncated);
|
||||
int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
|
||||
int bias = binary_format<T>::mantissa_explicit_bits() -
|
||||
binary_format<T>::minimum_exponent();
|
||||
answer.power2 = bigmant.bit_length() - 64 + bias;
|
||||
|
||||
round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
|
||||
round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
|
||||
return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
|
||||
});
|
||||
round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) {
|
||||
round_nearest_tie_even(
|
||||
a, shift,
|
||||
[truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
|
||||
return is_above || (is_halfway && truncated) ||
|
||||
(is_odd && is_halfway);
|
||||
});
|
||||
});
|
||||
|
||||
return answer;
|
||||
@ -341,15 +369,17 @@ adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcep
|
||||
// we then need to scale by `2^(f- e)`, and then the two significant digits
|
||||
// are of the same magnitude.
|
||||
template <typename T>
|
||||
inline FASTFLOAT_CONSTEXPR20
|
||||
adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
|
||||
bigint& real_digits = bigmant;
|
||||
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
|
||||
bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
|
||||
bigint &real_digits = bigmant;
|
||||
int32_t real_exp = exponent;
|
||||
|
||||
// get the value of `b`, rounded down, and get a bigint representation of b+h
|
||||
adjusted_mantissa am_b = am;
|
||||
// gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
|
||||
round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
|
||||
// gcc7 buf: use a lambda to remove the noexcept qualifier bug with
|
||||
// -Wnoexcept-type.
|
||||
round<T>(am_b,
|
||||
[](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); });
|
||||
T b;
|
||||
to_float(false, am_b, b);
|
||||
adjusted_mantissa theor = to_extended_halfway(b);
|
||||
@ -371,18 +401,19 @@ adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int
|
||||
// compare digits, and use it to director rounding
|
||||
int ord = real_digits.compare(theor_digits);
|
||||
adjusted_mantissa answer = am;
|
||||
round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
|
||||
round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
|
||||
(void)_; // not needed, since we've done our comparison
|
||||
(void)__; // not needed, since we've done our comparison
|
||||
if (ord > 0) {
|
||||
return true;
|
||||
} else if (ord < 0) {
|
||||
return false;
|
||||
} else {
|
||||
return is_odd;
|
||||
}
|
||||
});
|
||||
round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
|
||||
round_nearest_tie_even(
|
||||
a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
|
||||
(void)_; // not needed, since we've done our comparison
|
||||
(void)__; // not needed, since we've done our comparison
|
||||
if (ord > 0) {
|
||||
return true;
|
||||
} else if (ord < 0) {
|
||||
return false;
|
||||
} else {
|
||||
return is_odd;
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
return answer;
|
||||
@ -402,8 +433,8 @@ adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int
|
||||
// the actual digits. we then compare the big integer representations
|
||||
// of both, and use that to direct rounding.
|
||||
template <typename T, typename UC>
|
||||
inline FASTFLOAT_CONSTEXPR20
|
||||
adjusted_mantissa digit_comp(parsed_number_string_t<UC>& num, adjusted_mantissa am) noexcept {
|
||||
inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
|
||||
digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
|
||||
// remove the invalid exponent bias
|
||||
am.power2 -= invalid_am_bias;
|
||||
|
||||
|
||||
@ -6,43 +6,54 @@
|
||||
|
||||
namespace fast_float {
|
||||
/**
|
||||
* This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
|
||||
* a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale.
|
||||
* The resulting floating-point value is the closest floating-point values (using either float or double),
|
||||
* using the "round to even" convention for values that would otherwise fall right in-between two values.
|
||||
* That is, we provide exact parsing according to the IEEE standard.
|
||||
* This function parses the character sequence [first,last) for a number. It
|
||||
* parses floating-point numbers expecting a locale-indepent format equivalent
|
||||
* to what is used by std::strtod in the default ("C") locale. The resulting
|
||||
* floating-point value is the closest floating-point values (using either float
|
||||
* or double), using the "round to even" convention for values that would
|
||||
* otherwise fall right in-between two values. That is, we provide exact parsing
|
||||
* according to the IEEE standard.
|
||||
*
|
||||
* Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
|
||||
* parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
|
||||
* `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
|
||||
* Given a successful parse, the pointer (`ptr`) in the returned value is set to
|
||||
* point right after the parsed number, and the `value` referenced is set to the
|
||||
* parsed value. In case of error, the returned `ec` contains a representative
|
||||
* error, otherwise the default (`std::errc()`) value is stored.
|
||||
*
|
||||
* The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
|
||||
* The implementation does not throw and does not allocate memory (e.g., with
|
||||
* `new` or `malloc`).
|
||||
*
|
||||
* Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
|
||||
* the type `fast_float::chars_format`. It is a bitset value: we check whether
|
||||
* `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
|
||||
* to determine whether we allow the fixed point and scientific notation respectively.
|
||||
* The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
|
||||
* Like the C++17 standard, the `fast_float::from_chars` functions take an
|
||||
* optional last argument of the type `fast_float::chars_format`. It is a bitset
|
||||
* value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt &
|
||||
* fast_float::chars_format::scientific` are set to determine whether we allow
|
||||
* the fixed point and scientific notation respectively. The default is
|
||||
* `fast_float::chars_format::general` which allows both `fixed` and
|
||||
* `scientific`.
|
||||
*/
|
||||
template<typename T, typename UC = char, typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
from_chars_result_t<UC> from_chars(UC const * first, UC const * last,
|
||||
T &value, chars_format fmt = chars_format::general) noexcept;
|
||||
template <typename T, typename UC = char,
|
||||
typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>::value)>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars(UC const *first, UC const *last, T &value,
|
||||
chars_format fmt = chars_format::general) noexcept;
|
||||
|
||||
/**
|
||||
* Like from_chars, but accepts an `options` argument to govern number parsing.
|
||||
* Both for floating-point types and integer types.
|
||||
*/
|
||||
template<typename T, typename UC = char>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
from_chars_result_t<UC> from_chars_advanced(UC const * first, UC const * last,
|
||||
T &value, parse_options_t<UC> options) noexcept;
|
||||
template <typename T, typename UC = char>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_advanced(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC> options) noexcept;
|
||||
|
||||
/**
|
||||
* from_chars for integer types.
|
||||
*/
|
||||
template <typename T, typename UC = char, typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
from_chars_result_t<UC> from_chars(UC const * first, UC const * last, T& value, int base = 10) noexcept;
|
||||
* from_chars for integer types.
|
||||
*/
|
||||
template <typename T, typename UC = char,
|
||||
typename = FASTFLOAT_ENABLE_IF(is_supported_integer_type<T>::value)>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept;
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#include "parse_number.h"
|
||||
#endif // FASTFLOAT_FAST_FLOAT_H
|
||||
|
||||
1326
3rdparty/fast_float/include/fast_float/fast_table.h
vendored
1326
3rdparty/fast_float/include/fast_float/fast_table.h
vendored
File diff suppressed because it is too large
Load Diff
1147
3rdparty/fast_float/include/fast_float/float_common.h
vendored
1147
3rdparty/fast_float/include/fast_float/float_common.h
vendored
File diff suppressed because it is too large
Load Diff
@ -10,8 +10,8 @@
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <system_error>
|
||||
namespace fast_float {
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
namespace detail {
|
||||
/**
|
||||
@ -20,45 +20,49 @@ namespace detail {
|
||||
* strings a null-free and fixed.
|
||||
**/
|
||||
template <typename T, typename UC>
|
||||
from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14
|
||||
parse_infnan(UC const * first, UC const * last, T &value) noexcept {
|
||||
from_chars_result_t<UC>
|
||||
FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, UC const *last,
|
||||
T &value, chars_format fmt) noexcept {
|
||||
from_chars_result_t<UC> answer{};
|
||||
answer.ptr = first;
|
||||
answer.ec = std::errc(); // be optimistic
|
||||
bool minusSign = false;
|
||||
if (*first == UC('-')) { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
|
||||
minusSign = true;
|
||||
++first;
|
||||
// assume first < last, so dereference without checks;
|
||||
bool const minusSign = (*first == UC('-'));
|
||||
// C++17 20.19.3.(7.1) explicitly forbids '+' sign here
|
||||
if ((*first == UC('-')) ||
|
||||
(uint64_t(fmt & chars_format::allow_leading_plus) &&
|
||||
(*first == UC('+')))) {
|
||||
++first;
|
||||
}
|
||||
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
|
||||
if (*first == UC('+')) {
|
||||
++first;
|
||||
}
|
||||
#endif
|
||||
if (last - first >= 3) {
|
||||
if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
|
||||
answer.ptr = (first += 3);
|
||||
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
|
||||
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
|
||||
if(first != last && *first == UC('(')) {
|
||||
for(UC const * ptr = first + 1; ptr != last; ++ptr) {
|
||||
value = minusSign ? -std::numeric_limits<T>::quiet_NaN()
|
||||
: std::numeric_limits<T>::quiet_NaN();
|
||||
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7,
|
||||
// C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
|
||||
if (first != last && *first == UC('(')) {
|
||||
for (UC const *ptr = first + 1; ptr != last; ++ptr) {
|
||||
if (*ptr == UC(')')) {
|
||||
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
|
||||
break;
|
||||
}
|
||||
else if(!((UC('a') <= *ptr && *ptr <= UC('z')) || (UC('A') <= *ptr && *ptr <= UC('Z')) || (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
|
||||
} else if (!((UC('a') <= *ptr && *ptr <= UC('z')) ||
|
||||
(UC('A') <= *ptr && *ptr <= UC('Z')) ||
|
||||
(UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
|
||||
break; // forbidden char, not nan(n-char-seq-opt)
|
||||
}
|
||||
}
|
||||
return answer;
|
||||
}
|
||||
if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
|
||||
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
|
||||
if ((last - first >= 8) &&
|
||||
fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
|
||||
answer.ptr = first + 8;
|
||||
} else {
|
||||
answer.ptr = first + 3;
|
||||
}
|
||||
value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
|
||||
value = minusSign ? -std::numeric_limits<T>::infinity()
|
||||
: std::numeric_limits<T>::infinity();
|
||||
return answer;
|
||||
}
|
||||
}
|
||||
@ -86,73 +90,71 @@ fastfloat_really_inline bool rounds_to_nearest() noexcept {
|
||||
// However, it is expected to be much faster than the fegetround()
|
||||
// function call.
|
||||
//
|
||||
// The volatile keywoard prevents the compiler from computing the function
|
||||
// The volatile keyword prevents the compiler from computing the function
|
||||
// at compile-time.
|
||||
// There might be other ways to prevent compile-time optimizations (e.g., asm).
|
||||
// The value does not need to be std::numeric_limits<float>::min(), any small
|
||||
// value so that 1 + x should round to 1 would do (after accounting for excess
|
||||
// precision, as in 387 instructions).
|
||||
static volatile float fmin = std::numeric_limits<float>::min();
|
||||
// There might be other ways to prevent compile-time optimizations (e.g.,
|
||||
// asm). The value does not need to be std::numeric_limits<float>::min(), any
|
||||
// small value so that 1 + x should round to 1 would do (after accounting for
|
||||
// excess precision, as in 387 instructions).
|
||||
static float volatile fmin = std::numeric_limits<float>::min();
|
||||
float fmini = fmin; // we copy it so that it gets loaded at most once.
|
||||
//
|
||||
// Explanation:
|
||||
// Only when fegetround() == FE_TONEAREST do we have that
|
||||
// fmin + 1.0f == 1.0f - fmin.
|
||||
//
|
||||
// FE_UPWARD:
|
||||
// fmin + 1.0f > 1
|
||||
// 1.0f - fmin == 1
|
||||
//
|
||||
// FE_DOWNWARD or FE_TOWARDZERO:
|
||||
// fmin + 1.0f == 1
|
||||
// 1.0f - fmin < 1
|
||||
//
|
||||
// Note: This may fail to be accurate if fast-math has been
|
||||
// enabled, as rounding conventions may not apply.
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
# pragma warning(push)
|
||||
// todo: is there a VS warning?
|
||||
// see https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
|
||||
#elif defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wfloat-equal"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wfloat-equal"
|
||||
#endif
|
||||
//
|
||||
// Explanation:
|
||||
// Only when fegetround() == FE_TONEAREST do we have that
|
||||
// fmin + 1.0f == 1.0f - fmin.
|
||||
//
|
||||
// FE_UPWARD:
|
||||
// fmin + 1.0f > 1
|
||||
// 1.0f - fmin == 1
|
||||
//
|
||||
// FE_DOWNWARD or FE_TOWARDZERO:
|
||||
// fmin + 1.0f == 1
|
||||
// 1.0f - fmin < 1
|
||||
//
|
||||
// Note: This may fail to be accurate if fast-math has been
|
||||
// enabled, as rounding conventions may not apply.
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
#pragma warning(push)
|
||||
// todo: is there a VS warning?
|
||||
// see
|
||||
// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
|
||||
#elif defined(__clang__)
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wfloat-equal"
|
||||
#elif defined(__GNUC__)
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wfloat-equal"
|
||||
#endif
|
||||
return (fmini + 1.0f == 1.0f - fmini);
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
# pragma warning(pop)
|
||||
#elif defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
#pragma warning(pop)
|
||||
#elif defined(__clang__)
|
||||
#pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
template <typename T>
|
||||
struct from_chars_caller
|
||||
{
|
||||
template <typename T> struct from_chars_caller {
|
||||
template <typename UC>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
static from_chars_result_t<UC> call(UC const * first, UC const * last,
|
||||
T &value, parse_options_t<UC> options) noexcept {
|
||||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
|
||||
call(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
return from_chars_advanced(first, last, value, options);
|
||||
}
|
||||
};
|
||||
|
||||
#if __STDCPP_FLOAT32_T__ == 1
|
||||
template <>
|
||||
struct from_chars_caller<std::float32_t>
|
||||
{
|
||||
#ifdef __STDCPP_FLOAT32_T__
|
||||
template <> struct from_chars_caller<std::float32_t> {
|
||||
template <typename UC>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
static from_chars_result_t<UC> call(UC const * first, UC const * last,
|
||||
std::float32_t &value, parse_options_t<UC> options) noexcept{
|
||||
// if std::float32_t is defined, and we are in C++23 mode; macro set for float32;
|
||||
// set value to float due to equivalence between float and float32_t
|
||||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
|
||||
call(UC const *first, UC const *last, std::float32_t &value,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
// if std::float32_t is defined, and we are in C++23 mode; macro set for
|
||||
// float32; set value to float due to equivalence between float and
|
||||
// float32_t
|
||||
float val;
|
||||
auto ret = from_chars_advanced(first, last, val, options);
|
||||
value = val;
|
||||
@ -161,16 +163,15 @@ struct from_chars_caller<std::float32_t>
|
||||
};
|
||||
#endif
|
||||
|
||||
#if __STDCPP_FLOAT64_T__ == 1
|
||||
template <>
|
||||
struct from_chars_caller<std::float64_t>
|
||||
{
|
||||
#ifdef __STDCPP_FLOAT64_T__
|
||||
template <> struct from_chars_caller<std::float64_t> {
|
||||
template <typename UC>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
static from_chars_result_t<UC> call(UC const * first, UC const * last,
|
||||
std::float64_t &value, parse_options_t<UC> options) noexcept{
|
||||
// if std::float64_t is defined, and we are in C++23 mode; macro set for float64;
|
||||
// set value as double due to equivalence between double and float64_t
|
||||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
|
||||
call(UC const *first, UC const *last, std::float64_t &value,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
// if std::float64_t is defined, and we are in C++23 mode; macro set for
|
||||
// float64; set value as double due to equivalence between double and
|
||||
// float64_t
|
||||
double val;
|
||||
auto ret = from_chars_advanced(first, last, val, options);
|
||||
value = val;
|
||||
@ -179,52 +180,40 @@ struct from_chars_caller<std::float64_t>
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
template<typename T, typename UC, typename>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
from_chars_result_t<UC> from_chars(UC const * first, UC const * last,
|
||||
T &value, chars_format fmt /*= chars_format::general*/) noexcept {
|
||||
return from_chars_caller<T>::call(first, last, value, parse_options_t<UC>(fmt));
|
||||
template <typename T, typename UC, typename>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars(UC const *first, UC const *last, T &value,
|
||||
chars_format fmt /*= chars_format::general*/) noexcept {
|
||||
return from_chars_caller<T>::call(first, last, value,
|
||||
parse_options_t<UC>(fmt));
|
||||
}
|
||||
|
||||
template<typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
from_chars_result_t<UC> from_chars_advanced(UC const * first, UC const * last,
|
||||
T &value, parse_options_t<UC> options) noexcept {
|
||||
/**
|
||||
* This function overload takes parsed_number_string_t structure that is created
|
||||
* and populated either by from_chars_advanced function taking chars range and
|
||||
* parsing options or other parsing custom function implemented by user.
|
||||
*/
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
|
||||
|
||||
static_assert (is_supported_float_type<T>(), "only some floating-point types are supported");
|
||||
static_assert (is_supported_char_type<UC>(), "only char, wchar_t, char16_t and char32_t are supported");
|
||||
static_assert(is_supported_float_type<T>::value,
|
||||
"only some floating-point types are supported");
|
||||
static_assert(is_supported_char_type<UC>::value,
|
||||
"only char, wchar_t, char16_t and char32_t are supported");
|
||||
|
||||
from_chars_result_t<UC> answer;
|
||||
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
|
||||
while ((first != last) && fast_float::is_space(uint8_t(*first))) {
|
||||
first++;
|
||||
}
|
||||
#endif
|
||||
if (first == last) {
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
answer.ptr = first;
|
||||
return answer;
|
||||
}
|
||||
parsed_number_string_t<UC> pns = parse_number_string<UC>(first, last, options);
|
||||
if (!pns.valid) {
|
||||
if (options.format & chars_format::no_infnan) {
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
answer.ptr = first;
|
||||
return answer;
|
||||
} else {
|
||||
return detail::parse_infnan(first, last, value);
|
||||
}
|
||||
}
|
||||
|
||||
answer.ec = std::errc(); // be optimistic
|
||||
answer.ptr = pns.lastmatch;
|
||||
// The implementation of the Clinger's fast path is convoluted because
|
||||
// we want round-to-nearest in all cases, irrespective of the rounding mode
|
||||
// selected on the thread.
|
||||
// We proceed optimistically, assuming that detail::rounds_to_nearest() returns
|
||||
// true.
|
||||
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && !pns.too_many_digits) {
|
||||
// We proceed optimistically, assuming that detail::rounds_to_nearest()
|
||||
// returns true.
|
||||
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
|
||||
pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
|
||||
!pns.too_many_digits) {
|
||||
// Unfortunately, the conventional Clinger's fast path is only possible
|
||||
// when the system rounds to the nearest float.
|
||||
//
|
||||
@ -232,68 +221,179 @@ from_chars_result_t<UC> from_chars_advanced(UC const * first, UC const * last,
|
||||
// We could check it first (before the previous branch), but
|
||||
// there might be performance advantages at having the check
|
||||
// be last.
|
||||
if(!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
|
||||
if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
|
||||
// We have that fegetround() == FE_TONEAREST.
|
||||
// Next is Clinger's fast path.
|
||||
if (pns.mantissa <=binary_format<T>::max_mantissa_fast_path()) {
|
||||
if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
|
||||
value = T(pns.mantissa);
|
||||
if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
|
||||
else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
|
||||
if (pns.negative) { value = -value; }
|
||||
if (pns.exponent < 0) {
|
||||
value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
|
||||
} else {
|
||||
value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
|
||||
}
|
||||
if (pns.negative) {
|
||||
value = -value;
|
||||
}
|
||||
return answer;
|
||||
}
|
||||
} else {
|
||||
// We do not have that fegetround() == FE_TONEAREST.
|
||||
// Next is a modified Clinger's fast path, inspired by Jakub Jelínek's proposal
|
||||
if (pns.exponent >= 0 && pns.mantissa <=binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
|
||||
// Next is a modified Clinger's fast path, inspired by Jakub Jelínek's
|
||||
// proposal
|
||||
if (pns.exponent >= 0 &&
|
||||
pns.mantissa <=
|
||||
binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
|
||||
#if defined(__clang__) || defined(FASTFLOAT_32BIT)
|
||||
// Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
|
||||
if(pns.mantissa == 0) {
|
||||
if (pns.mantissa == 0) {
|
||||
value = pns.negative ? T(-0.) : T(0.);
|
||||
return answer;
|
||||
}
|
||||
#endif
|
||||
value = T(pns.mantissa) * binary_format<T>::exact_power_of_ten(pns.exponent);
|
||||
if (pns.negative) { value = -value; }
|
||||
value = T(pns.mantissa) *
|
||||
binary_format<T>::exact_power_of_ten(pns.exponent);
|
||||
if (pns.negative) {
|
||||
value = -value;
|
||||
}
|
||||
return answer;
|
||||
}
|
||||
}
|
||||
}
|
||||
adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
|
||||
if(pns.too_many_digits && am.power2 >= 0) {
|
||||
if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
|
||||
adjusted_mantissa am =
|
||||
compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
|
||||
if (pns.too_many_digits && am.power2 >= 0) {
|
||||
if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
|
||||
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
|
||||
}
|
||||
}
|
||||
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
|
||||
// then we need to go the long way around again. This is very uncommon.
|
||||
if(am.power2 < 0) { am = digit_comp<T>(pns, am); }
|
||||
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa)
|
||||
// and we have an invalid power (am.power2 < 0), then we need to go the long
|
||||
// way around again. This is very uncommon.
|
||||
if (am.power2 < 0) {
|
||||
am = digit_comp<T>(pns, am);
|
||||
}
|
||||
to_float(pns.negative, am, value);
|
||||
// Test for over/underflow.
|
||||
if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || am.power2 == binary_format<T>::infinite_power()) {
|
||||
if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) ||
|
||||
am.power2 == binary_format<T>::infinite_power()) {
|
||||
answer.ec = std::errc::result_out_of_range;
|
||||
}
|
||||
return answer;
|
||||
}
|
||||
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_float_advanced(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
|
||||
template <typename T, typename UC, typename>
|
||||
FASTFLOAT_CONSTEXPR20
|
||||
from_chars_result_t<UC> from_chars(UC const* first, UC const* last, T& value, int base) noexcept {
|
||||
static_assert (is_supported_char_type<UC>(), "only char, wchar_t, char16_t and char32_t are supported");
|
||||
static_assert(is_supported_float_type<T>::value,
|
||||
"only some floating-point types are supported");
|
||||
static_assert(is_supported_char_type<UC>::value,
|
||||
"only char, wchar_t, char16_t and char32_t are supported");
|
||||
|
||||
chars_format const fmt = detail::adjust_for_feature_macros(options.format);
|
||||
|
||||
from_chars_result_t<UC> answer;
|
||||
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
|
||||
while ((first != last) && fast_float::is_space(uint8_t(*first))) {
|
||||
first++;
|
||||
if (uint64_t(fmt & chars_format::skip_white_space)) {
|
||||
while ((first != last) && fast_float::is_space(*first)) {
|
||||
first++;
|
||||
}
|
||||
}
|
||||
if (first == last) {
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
answer.ptr = first;
|
||||
return answer;
|
||||
}
|
||||
parsed_number_string_t<UC> pns =
|
||||
uint64_t(fmt & detail::basic_json_fmt)
|
||||
? parse_number_string<true, UC>(first, last, options)
|
||||
: parse_number_string<false, UC>(first, last, options);
|
||||
if (!pns.valid) {
|
||||
if (uint64_t(fmt & chars_format::no_infnan)) {
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
answer.ptr = first;
|
||||
return answer;
|
||||
} else {
|
||||
return detail::parse_infnan(first, last, value, fmt);
|
||||
}
|
||||
}
|
||||
|
||||
// call overload that takes parsed_number_string_t directly.
|
||||
return from_chars_advanced(pns, value);
|
||||
}
|
||||
|
||||
template <typename T, typename UC, typename>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars(UC const *first, UC const *last, T &value, int base) noexcept {
|
||||
|
||||
static_assert(is_supported_integer_type<T>::value,
|
||||
"only integer types are supported");
|
||||
static_assert(is_supported_char_type<UC>::value,
|
||||
"only char, wchar_t, char16_t and char32_t are supported");
|
||||
|
||||
parse_options_t<UC> options;
|
||||
options.base = base;
|
||||
return from_chars_advanced(first, last, value, options);
|
||||
}
|
||||
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_int_advanced(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
|
||||
static_assert(is_supported_integer_type<T>::value,
|
||||
"only integer types are supported");
|
||||
static_assert(is_supported_char_type<UC>::value,
|
||||
"only char, wchar_t, char16_t and char32_t are supported");
|
||||
|
||||
chars_format const fmt = detail::adjust_for_feature_macros(options.format);
|
||||
int const base = options.base;
|
||||
|
||||
from_chars_result_t<UC> answer;
|
||||
if (uint64_t(fmt & chars_format::skip_white_space)) {
|
||||
while ((first != last) && fast_float::is_space(*first)) {
|
||||
first++;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (first == last || base < 2 || base > 36) {
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
answer.ptr = first;
|
||||
return answer;
|
||||
}
|
||||
return parse_int_string(first, last, value, base);
|
||||
|
||||
return parse_int_string(first, last, value, options);
|
||||
}
|
||||
|
||||
template <size_t TypeIx> struct from_chars_advanced_caller {
|
||||
static_assert(TypeIx > 0, "unsupported type");
|
||||
};
|
||||
|
||||
template <> struct from_chars_advanced_caller<1> {
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
|
||||
call(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
return from_chars_float_advanced(first, last, value, options);
|
||||
}
|
||||
};
|
||||
|
||||
template <> struct from_chars_advanced_caller<2> {
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
|
||||
call(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
return from_chars_int_advanced(first, last, value, options);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename UC>
|
||||
FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
|
||||
from_chars_advanced(UC const *first, UC const *last, T &value,
|
||||
parse_options_t<UC> options) noexcept {
|
||||
return from_chars_advanced_caller<
|
||||
size_t(is_supported_float_type<T>::value) +
|
||||
2 * size_t(is_supported_integer_type<T>::value)>::call(first, last, value,
|
||||
options);
|
||||
}
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
Loading…
Reference in New Issue
Block a user