pcsx2/bin/resources/shaders/vulkan/tfx.glsl
lightningterror 71376ff4e6 GS/HW: Decorrect Ad on sw blend in tfx shader.
Otherwise if we do decorrection in covert shader we add more copies.

Also make sure to decorrect for fbmask, tex is fb.
2024-03-17 17:24:39 +01:00

1349 lines
31 KiB
GLSL

// SPDX-FileCopyrightText: 2002-2023 PCSX2 Dev Team
// SPDX-License-Identifier: LGPL-3.0+
//////////////////////////////////////////////////////////////////////
// Vertex Shader
//////////////////////////////////////////////////////////////////////
#if defined(VERTEX_SHADER)
layout(std140, set = 0, binding = 0) uniform cb0
{
vec2 VertexScale;
vec2 VertexOffset;
vec2 TextureScale;
vec2 TextureOffset;
vec2 PointSize;
uint MaxDepth;
uint pad_cb0;
};
layout(location = 0) out VSOutput
{
vec4 t;
vec4 ti;
#if VS_IIP != 0
vec4 c;
#else
flat vec4 c;
#endif
} vsOut;
#if VS_EXPAND == 0
layout(location = 0) in vec2 a_st;
layout(location = 1) in uvec4 a_c;
layout(location = 2) in float a_q;
layout(location = 3) in uvec2 a_p;
layout(location = 4) in uint a_z;
layout(location = 5) in uvec2 a_uv;
layout(location = 6) in vec4 a_f;
void main()
{
// Clamp to max depth, gs doesn't wrap
uint z = min(a_z, MaxDepth);
// pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go)
// example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty
// input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel
// example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133
gl_Position = vec4(a_p, float(z), 1.0f) - vec4(0.05f, 0.05f, 0, 0);
gl_Position.xy = gl_Position.xy * vec2(VertexScale.x, -VertexScale.y) - vec2(VertexOffset.x, -VertexOffset.y);
gl_Position.z *= exp2(-32.0f); // integer->float depth
gl_Position.y = -gl_Position.y;
#if VS_TME
vec2 uv = a_uv - TextureOffset;
vec2 st = a_st - TextureOffset;
// Integer nomalized
vsOut.ti.xy = uv * TextureScale;
#if VS_FST
// Integer integral
vsOut.ti.zw = uv;
#else
// float for post-processing in some games
vsOut.ti.zw = st / TextureScale;
#endif
// Float coords
vsOut.t.xy = st;
vsOut.t.w = a_q;
#else
vsOut.t = vec4(0.0f, 0.0f, 0.0f, 1.0f);
vsOut.ti = vec4(0.0f);
#endif
#if VS_POINT_SIZE
gl_PointSize = PointSize.x;
#endif
vsOut.c = vec4(a_c);
vsOut.t.z = a_f.r;
}
#else // VS_EXPAND
struct RawVertex
{
vec2 ST;
uint RGBA;
float Q;
uint XY;
uint Z;
uint UV;
uint FOG;
};
layout(std140, set = 0, binding = 2) readonly buffer VertexBuffer {
RawVertex vertex_buffer[];
};
struct ProcessedVertex
{
vec4 p;
vec4 t;
vec4 ti;
vec4 c;
};
ProcessedVertex load_vertex(uint index)
{
RawVertex rvtx = vertex_buffer[gl_BaseVertexARB + index];
vec2 a_st = rvtx.ST;
uvec4 a_c = uvec4(bitfieldExtract(rvtx.RGBA, 0, 8), bitfieldExtract(rvtx.RGBA, 8, 8),
bitfieldExtract(rvtx.RGBA, 16, 8), bitfieldExtract(rvtx.RGBA, 24, 8));
float a_q = rvtx.Q;
uvec2 a_p = uvec2(bitfieldExtract(rvtx.XY, 0, 16), bitfieldExtract(rvtx.XY, 16, 16));
uint a_z = rvtx.Z;
uvec2 a_uv = uvec2(bitfieldExtract(rvtx.UV, 0, 16), bitfieldExtract(rvtx.UV, 16, 16));
vec4 a_f = unpackUnorm4x8(rvtx.FOG);
ProcessedVertex vtx;
uint z = min(a_z, MaxDepth);
vtx.p = vec4(a_p, float(z), 1.0f) - vec4(0.05f, 0.05f, 0, 0);
vtx.p.xy = vtx.p.xy * vec2(VertexScale.x, -VertexScale.y) - vec2(VertexOffset.x, -VertexOffset.y);
vtx.p.z *= exp2(-32.0f); // integer->float depth
vtx.p.y = -vtx.p.y;
#if VS_TME
vec2 uv = a_uv - TextureOffset;
vec2 st = a_st - TextureOffset;
vtx.ti.xy = uv * TextureScale;
#if VS_FST
vtx.ti.zw = uv;
#else
vtx.ti.zw = st / TextureScale;
#endif
vtx.t.xy = st;
vtx.t.w = a_q;
#else
vtx.t = vec4(0.0f, 0.0f, 0.0f, 1.0f);
vtx.ti = vec4(0.0f);
#endif
vtx.c = a_c;
vtx.t.z = a_f.r;
return vtx;
}
void main()
{
ProcessedVertex vtx;
uint vid = uint(gl_VertexIndex - gl_BaseVertexARB);
#if VS_EXPAND == 1 // Point
vtx = load_vertex(vid >> 2);
vtx.p.x += ((vid & 1u) != 0u) ? PointSize.x : 0.0f;
vtx.p.y += ((vid & 2u) != 0u) ? PointSize.y : 0.0f;
#elif VS_EXPAND == 2 // Line
uint vid_base = vid >> 2;
bool is_bottom = (vid & 2u) != 0u;
bool is_right = (vid & 1u) != 0u;
#ifdef VS_PROVOKING_VERTEX_LAST
uint vid_other = is_bottom ? vid_base - 1 : vid_base + 1;
#else
uint vid_other = is_bottom ? vid_base + 1 : vid_base - 1;
#endif
vtx = load_vertex(vid_base);
ProcessedVertex other = load_vertex(vid_other);
vec2 line_vector = normalize(vtx.p.xy - other.p.xy);
vec2 line_normal = vec2(line_vector.y, -line_vector.x);
vec2 line_width = (line_normal * PointSize) / 2;
// line_normal is inverted for bottom point
vec2 offset = ((uint(is_bottom) ^ uint(is_right)) != 0u) ? line_width : -line_width;
vtx.p.xy += offset;
// Lines will be run as (0 1 2) (1 2 3)
// This means that both triangles will have a point based off the top line point as their first point
// So we don't have to do anything for !IIP
#elif VS_EXPAND == 3 // Sprite
// Sprite points are always in pairs
uint vid_base = vid >> 1;
uint vid_lt = vid_base & ~1u;
uint vid_rb = vid_base | 1u;
ProcessedVertex lt = load_vertex(vid_lt);
ProcessedVertex rb = load_vertex(vid_rb);
vtx = rb;
bool is_right = ((vid & 1u) != 0u);
vtx.p.x = is_right ? lt.p.x : vtx.p.x;
vtx.t.x = is_right ? lt.t.x : vtx.t.x;
vtx.ti.xz = is_right ? lt.ti.xz : vtx.ti.xz;
bool is_bottom = ((vid & 2u) != 0u);
vtx.p.y = is_bottom ? lt.p.y : vtx.p.y;
vtx.t.y = is_bottom ? lt.t.y : vtx.t.y;
vtx.ti.yw = is_bottom ? lt.ti.yw : vtx.ti.yw;
#endif
gl_Position = vtx.p;
vsOut.t = vtx.t;
vsOut.ti = vtx.ti;
vsOut.c = vtx.c;
}
#endif // VS_EXPAND
#endif // VERTEX_SHADER
#ifdef FRAGMENT_SHADER
#define FMT_32 0
#define FMT_24 1
#define FMT_16 2
#ifndef VS_TME
#define VS_TME 1
#define VS_FST 1
#endif
#ifndef GS_IIP
#define GS_IIP 0
#define GS_PRIM 3
#define GS_POINT 0
#define GS_LINE 0
#endif
#ifndef PS_FST
#define PS_FST 0
#define PS_WMS 0
#define PS_WMT 0
#define PS_ADJS 0
#define PS_ADJT 0
#define PS_FMT FMT_32
#define PS_AEM 0
#define PS_TFX 0
#define PS_TCC 1
#define PS_ATST 1
#define PS_FOG 0
#define PS_BLEND_HW 0
#define PS_A_MASKED 0
#define PS_FBA 0
#define PS_FBMASK 0
#define PS_LTF 1
#define PS_TCOFFSETHACK 0
#define PS_POINT_SAMPLER 0
#define PS_SHUFFLE 0
#define PS_SHUFFLE_SAME 0
#define PS_READ_BA 0
#define PS_WRITE_RG 0
#define PS_READ16_SRC 0
#define PS_DST_FMT 0
#define PS_DEPTH_FMT 0
#define PS_PAL_FMT 0
#define PS_CHANNEL_FETCH 0
#define PS_TALES_OF_ABYSS_HLE 0
#define PS_URBAN_CHAOS_HLE 0
#define PS_HDR 0
#define PS_COLCLIP 0
#define PS_BLEND_A 0
#define PS_BLEND_B 0
#define PS_BLEND_C 0
#define PS_BLEND_D 0
#define PS_FIXED_ONE_A 0
#define PS_PABE 0
#define PS_DITHER 0
#define PS_DITHER_ADJUST 0
#define PS_ZCLAMP 0
#define PS_FEEDBACK_LOOP 0
#define PS_TEX_IS_FB 0
#endif
#define SW_BLEND (PS_BLEND_A || PS_BLEND_B || PS_BLEND_D)
#define SW_BLEND_NEEDS_RT (SW_BLEND && (PS_BLEND_A == 1 || PS_BLEND_B == 1 || PS_BLEND_C == 1 || PS_BLEND_D == 1))
#define SW_AD_TO_HW (PS_BLEND_C == 1 && PS_A_MASKED)
#define PS_FEEDBACK_LOOP_IS_NEEDED (PS_TEX_IS_FB == 1 || PS_FBMASK || SW_BLEND_NEEDS_RT || SW_AD_TO_HW || (PS_DATE >= 5))
#define NEEDS_TEX (PS_TFX != 4)
layout(std140, set = 0, binding = 1) uniform cb1
{
vec3 FogColor;
float AREF;
vec4 WH;
vec2 TA;
float MaxDepthPS;
float Af;
uvec4 FbMask;
vec4 HalfTexel;
vec4 MinMax;
vec4 STRange;
ivec4 ChannelShuffle;
vec2 TC_OffsetHack;
vec2 STScale;
mat4 DitherMatrix;
float ScaledScaleFactor;
float RcpScaleFactor;
};
layout(location = 0) in VSOutput
{
vec4 t;
vec4 ti;
#if PS_IIP != 0
vec4 c;
#else
flat vec4 c;
#endif
} vsIn;
#if !defined(DISABLE_DUAL_SOURCE) && !PS_NO_COLOR1
layout(location = 0, index = 0) out vec4 o_col0;
layout(location = 0, index = 1) out vec4 o_col1;
#elif !PS_NO_COLOR
layout(location = 0) out vec4 o_col0;
#endif
#if NEEDS_TEX
layout(set = 1, binding = 0) uniform sampler2D Texture;
layout(set = 1, binding = 1) uniform texture2D Palette;
#endif
#if PS_FEEDBACK_LOOP_IS_NEEDED
#if defined(DISABLE_TEXTURE_BARRIER) || defined(HAS_FEEDBACK_LOOP_LAYOUT)
layout(set = 1, binding = 2) uniform texture2D RtSampler;
vec4 sample_from_rt() { return texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0); }
#else
layout(input_attachment_index = 0, set = 1, binding = 2) uniform subpassInput RtSampler;
vec4 sample_from_rt() { return subpassLoad(RtSampler); }
#endif
#endif
#if PS_DATE > 0
layout(set = 1, binding = 3) uniform texture2D PrimMinTexture;
#endif
#if NEEDS_TEX
vec4 sample_c(vec2 uv)
{
#if PS_TEX_IS_FB
return sample_from_rt();
#elif PS_REGION_RECT
return texelFetch(Texture, ivec2(uv), 0);
#else
#if PS_POINT_SAMPLER
// Weird issue with ATI/AMD cards,
// it looks like they add 127/128 of a texel to sampling coordinates
// occasionally causing point sampling to erroneously round up.
// I'm manually adjusting coordinates to the centre of texels here,
// though the centre is just paranoia, the top left corner works fine.
// As of 2018 this issue is still present.
uv = (trunc(uv * WH.zw) + vec2(0.5, 0.5)) / WH.zw;
#endif
#if !PS_ADJS && !PS_ADJT
uv *= STScale;
#else
#if PS_ADJS
uv.x = (uv.x - STRange.x) * STRange.z;
#else
uv.x = uv.x * STScale.x;
#endif
#if PS_ADJT
uv.y = (uv.y - STRange.y) * STRange.w;
#else
uv.y = uv.y * STScale.y;
#endif
#endif
#if PS_AUTOMATIC_LOD == 1
return texture(Texture, uv);
#elif PS_MANUAL_LOD == 1
// FIXME add LOD: K - ( LOG2(Q) * (1 << L))
float K = MinMax.x;
float L = MinMax.y;
float bias = MinMax.z;
float max_lod = MinMax.w;
float gs_lod = K - log2(abs(vsIn.t.w)) * L;
// FIXME max useful ?
//float lod = max(min(gs_lod, max_lod) - bias, 0.0f);
float lod = min(gs_lod, max_lod) - bias;
return textureLod(Texture, uv, lod);
#else
return textureLod(Texture, uv, 0); // No lod
#endif
#endif
}
vec4 sample_p(uint idx)
{
return texelFetch(Palette, ivec2(int(idx), 0), 0);
}
vec4 sample_p_norm(float u)
{
return sample_p(uint(u * 255.5f));
}
vec4 clamp_wrap_uv(vec4 uv)
{
vec4 tex_size = WH.xyxy;
#if PS_WMS == PS_WMT
{
#if PS_REGION_RECT == 1 && PS_WMS == 0
{
uv = fract(uv);
}
#elif PS_REGION_RECT == 1 && PS_WMS == 1
{
uv = clamp(uv, vec4(0.0f), vec4(1.0f));
}
#elif PS_WMS == 2
{
uv = clamp(uv, MinMax.xyxy, MinMax.zwzw);
}
#elif PS_WMS == 3
{
#if PS_FST == 0
// wrap negative uv coords to avoid an off by one error that shifted
// textures. Fixes Xenosaga's hair issue.
uv = fract(uv);
#endif
uv = vec4((uvec4(uv * tex_size) & floatBitsToUint(MinMax.xyxy)) | floatBitsToUint(MinMax.zwzw)) / tex_size;
}
#endif
}
#else
{
#if PS_REGION_RECT == 1 && PS_WMS == 0
{
uv.xz = fract(uv.xz);
}
#elif PS_REGION_RECT == 1 && PS_WMS == 1
{
uv.xz = clamp(uv.xz, vec2(0.0f), vec2(1.0f));
}
#elif PS_WMS == 2
{
uv.xz = clamp(uv.xz, MinMax.xx, MinMax.zz);
}
#elif PS_WMS == 3
{
#if PS_FST == 0
uv.xz = fract(uv.xz);
#endif
uv.xz = vec2((uvec2(uv.xz * tex_size.xx) & floatBitsToUint(MinMax.xx)) | floatBitsToUint(MinMax.zz)) / tex_size.xx;
}
#endif
#if PS_REGION_RECT == 1 && PS_WMT == 0
{
uv.yw = fract(uv.yw);
}
#elif PS_REGION_RECT == 1 && PS_WMT == 1
{
uv.yw = clamp(uv.yw, vec2(0.0f), vec2(1.0f));
}
#elif PS_WMT == 2
{
uv.yw = clamp(uv.yw, MinMax.yy, MinMax.ww);
}
#elif PS_WMT == 3
{
#if PS_FST == 0
uv.yw = fract(uv.yw);
#endif
uv.yw = vec2((uvec2(uv.yw * tex_size.yy) & floatBitsToUint(MinMax.yy)) | floatBitsToUint(MinMax.ww)) / tex_size.yy;
}
#endif
}
#endif
#if PS_REGION_RECT == 1
// Normalized -> Integer Coordinates.
uv = clamp(uv * WH.zwzw + STRange.xyxy, STRange.xyxy, STRange.zwzw);
#endif
return uv;
}
mat4 sample_4c(vec4 uv)
{
mat4 c;
c[0] = sample_c(uv.xy);
c[1] = sample_c(uv.zy);
c[2] = sample_c(uv.xw);
c[3] = sample_c(uv.zw);
return c;
}
uvec4 sample_4_index(vec4 uv)
{
vec4 c;
c.x = sample_c(uv.xy).a;
c.y = sample_c(uv.zy).a;
c.z = sample_c(uv.xw).a;
c.w = sample_c(uv.zw).a;
// Denormalize value
uvec4 i = uvec4(c * 255.5f);
#if PS_PAL_FMT == 1
// 4HL
return i & 0xFu;
#elif PS_PAL_FMT == 2
// 4HH
return i >> 4u;
#else
// 8
return i;
#endif
}
mat4 sample_4p(uvec4 u)
{
mat4 c;
c[0] = sample_p(u.x);
c[1] = sample_p(u.y);
c[2] = sample_p(u.z);
c[3] = sample_p(u.w);
return c;
}
int fetch_raw_depth(ivec2 xy)
{
#if PS_TEX_IS_FB
vec4 col = sample_from_rt();
#else
vec4 col = texelFetch(Texture, xy, 0);
#endif
return int(col.r * exp2(32.0f));
}
vec4 fetch_raw_color(ivec2 xy)
{
#if PS_TEX_IS_FB
return sample_from_rt();
#else
return texelFetch(Texture, xy, 0);
#endif
}
vec4 fetch_c(ivec2 uv)
{
#if PS_TEX_IS_FB
return sample_from_rt();
#else
return texelFetch(Texture, uv, 0);
#endif
}
//////////////////////////////////////////////////////////////////////
// Depth sampling
//////////////////////////////////////////////////////////////////////
ivec2 clamp_wrap_uv_depth(ivec2 uv)
{
ivec4 mask = floatBitsToInt(MinMax) << 4;
#if (PS_WMS == PS_WMT)
{
#if (PS_WMS == 2)
{
uv = clamp(uv, mask.xy, mask.zw);
}
#elif (PS_WMS == 3)
{
uv = (uv & mask.xy) | mask.zw;
}
#endif
}
#else
{
#if (PS_WMS == 2)
{
uv.x = clamp(uv.x, mask.x, mask.z);
}
#elif (PS_WMS == 3)
{
uv.x = (uv.x & mask.x) | mask.z;
}
#endif
#if (PS_WMT == 2)
{
uv.y = clamp(uv.y, mask.y, mask.w);
}
#elif (PS_WMT == 3)
{
uv.y = (uv.y & mask.y) | mask.w;
}
#endif
}
#endif
return uv;
}
vec4 sample_depth(vec2 st, ivec2 pos)
{
vec2 uv_f = vec2(clamp_wrap_uv_depth(ivec2(st))) * vec2(ScaledScaleFactor);
#if PS_REGION_RECT == 1
uv_f = clamp(uv_f + STRange.xy, STRange.xy, STRange.zw);
#endif
ivec2 uv = ivec2(uv_f);
vec4 t = vec4(0.0f);
#if (PS_TALES_OF_ABYSS_HLE == 1)
{
// Warning: UV can't be used in channel effect
int depth = fetch_raw_depth(pos);
// Convert msb based on the palette
t = texelFetch(Palette, ivec2((depth >> 8) & 0xFF, 0), 0) * 255.0f;
}
#elif (PS_URBAN_CHAOS_HLE == 1)
{
// Depth buffer is read as a RGB5A1 texture. The game try to extract the green channel.
// So it will do a first channel trick to extract lsb, value is right-shifted.
// Then a new channel trick to extract msb which will shifted to the left.
// OpenGL uses a vec32 format for the depth so it requires a couple of conversion.
// To be faster both steps (msb&lsb) are done in a single pass.
// Warning: UV can't be used in channel effect
int depth = fetch_raw_depth(pos);
// Convert lsb based on the palette
t = texelFetch(Palette, ivec2(depth & 0xFF, 0), 0) * 255.0f;
// Msb is easier
float green = float(((depth >> 8) & 0xFF) * 36.0f);
green = min(green, 255.0f);
t.g += green;
}
#elif (PS_DEPTH_FMT == 1)
{
// Based on ps_convert_float32_rgba8 of convert
// Convert a vec32 depth texture into a RGBA color texture
uint d = uint(fetch_c(uv).r * exp2(32.0f));
t = vec4(uvec4((d & 0xFFu), ((d >> 8) & 0xFFu), ((d >> 16) & 0xFFu), (d >> 24)));
}
#elif (PS_DEPTH_FMT == 2)
{
// Based on ps_convert_float16_rgb5a1 of convert
// Convert a vec32 (only 16 lsb) depth into a RGB5A1 color texture
uint d = uint(fetch_c(uv).r * exp2(32.0f));
t = vec4(uvec4((d & 0x1Fu), ((d >> 5) & 0x1Fu), ((d >> 10) & 0x1Fu), (d >> 15) & 0x01u)) * vec4(8.0f, 8.0f, 8.0f, 128.0f);
}
#elif (PS_DEPTH_FMT == 3)
{
// Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture
t = fetch_c(uv) * 255.0f;
}
#endif
#if (PS_AEM_FMT == FMT_24)
{
t.a = ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f;
}
#elif (PS_AEM_FMT == FMT_16)
{
t.a = t.a >= 128.0f ? 255.0f * TA.y : ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f;
}
#elif PS_PAL_FMT != 0 && !PS_TALES_OF_ABYSS_HLE && !PS_URBAN_CHAOS_HLE
{
t = trunc(sample_4p(uvec4(t.aaaa))[0] * 255.0f + 0.05f);
}
#endif
return t;
}
//////////////////////////////////////////////////////////////////////
// Fetch a Single Channel
//////////////////////////////////////////////////////////////////////
vec4 fetch_red(ivec2 xy)
{
vec4 rt;
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
int depth = (fetch_raw_depth(xy)) & 0xFF;
rt = vec4(float(depth) / 255.0f);
#else
rt = fetch_raw_color(xy);
#endif
return sample_p_norm(rt.r) * 255.0f;
}
vec4 fetch_green(ivec2 xy)
{
vec4 rt;
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
int depth = (fetch_raw_depth(xy) >> 8) & 0xFF;
rt = vec4(float(depth) / 255.0f);
#else
rt = fetch_raw_color(xy);
#endif
return sample_p_norm(rt.g) * 255.0f;
}
vec4 fetch_blue(ivec2 xy)
{
vec4 rt;
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
int depth = (fetch_raw_depth(xy) >> 16) & 0xFF;
rt = vec4(float(depth) / 255.0f);
#else
rt = fetch_raw_color(xy);
#endif
return sample_p_norm(rt.b) * 255.0f;
}
vec4 fetch_alpha(ivec2 xy)
{
vec4 rt = fetch_raw_color(xy);
return sample_p_norm(rt.a) * 255.0f;
}
vec4 fetch_rgb(ivec2 xy)
{
vec4 rt = fetch_raw_color(xy);
vec4 c = vec4(sample_p_norm(rt.r).r, sample_p_norm(rt.g).g, sample_p_norm(rt.b).b, 1.0);
return c * 255.0f;
}
vec4 fetch_gXbY(ivec2 xy)
{
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
int depth = fetch_raw_depth(xy);
int bg = (depth >> (8 + ChannelShuffle.w)) & 0xFF;
return vec4(bg);
#else
ivec4 rt = ivec4(fetch_raw_color(xy) * 255.0);
int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z;
int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x;
return vec4(float(green | blue));
#endif
}
vec4 sample_color(vec2 st)
{
#if PS_TCOFFSETHACK
st += TC_OffsetHack.xy;
#endif
vec4 t;
mat4 c;
vec2 dd;
#if PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_REGION_RECT == 0 && PS_WMS < 2 && PS_WMT < 2
{
c[0] = sample_c(st);
}
#else
{
vec4 uv;
#if PS_LTF
{
uv = st.xyxy + HalfTexel;
dd = fract(uv.xy * WH.zw);
#if PS_FST == 0
{
dd = clamp(dd, vec2(0.0f), vec2(0.9999999f));
}
#endif
}
#else
{
uv = st.xyxy;
}
#endif
uv = clamp_wrap_uv(uv);
#if PS_PAL_FMT != 0
c = sample_4p(sample_4_index(uv));
#else
c = sample_4c(uv);
#endif
}
#endif
for (uint i = 0; i < 4; i++)
{
#if (PS_AEM_FMT == FMT_24)
c[i].a = (PS_AEM == 0 || any(bvec3(c[i].rgb))) ? TA.x : 0.0f;
#elif (PS_AEM_FMT == FMT_16)
c[i].a = (c[i].a >= 0.5) ? TA.y : ((PS_AEM == 0 || any(bvec3(ivec3(c[i].rgb * 255.0f) & ivec3(0xF8)))) ? TA.x : 0.0f);
#endif
}
#if PS_LTF
{
t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y);
}
#else
{
t = c[0];
}
#endif
return trunc(t * 255.0f + 0.05f);
}
#endif // NEEDS_TEX
vec4 tfx(vec4 T, vec4 C)
{
vec4 C_out;
vec4 FxT = trunc((C * T) / 128.0f);
#if (PS_TFX == 0)
C_out = FxT;
#elif (PS_TFX == 1)
C_out = T;
#elif (PS_TFX == 2)
C_out.rgb = FxT.rgb + C.a;
C_out.a = T.a + C.a;
#elif (PS_TFX == 3)
C_out.rgb = FxT.rgb + C.a;
C_out.a = T.a;
#else
C_out = C;
#endif
#if (PS_TCC == 0)
C_out.a = C.a;
#endif
#if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3)
// Clamp only when it is useful
C_out = min(C_out, 255.0f);
#endif
return C_out;
}
void atst(vec4 C)
{
float a = C.a;
#if (PS_ATST == 0)
{
// nothing to do
}
#elif (PS_ATST == 1)
{
if (a > AREF) discard;
}
#elif (PS_ATST == 2)
{
if (a < AREF) discard;
}
#elif (PS_ATST == 3)
{
if (abs(a - AREF) > 0.5f) discard;
}
#elif (PS_ATST == 4)
{
if (abs(a - AREF) < 0.5f) discard;
}
#endif
}
vec4 fog(vec4 c, float f)
{
#if PS_FOG
c.rgb = trunc(mix(FogColor, c.rgb, f));
#endif
return c;
}
vec4 ps_color()
{
#if PS_FST == 0
vec2 st = vsIn.t.xy / vsIn.t.w;
vec2 st_int = vsIn.ti.zw / vsIn.t.w;
#else
vec2 st = vsIn.ti.xy;
vec2 st_int = vsIn.ti.zw;
#endif
#if !NEEDS_TEX
vec4 T = vec4(0.0f);
#elif PS_CHANNEL_FETCH == 1
vec4 T = fetch_red(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 2
vec4 T = fetch_green(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 3
vec4 T = fetch_blue(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 4
vec4 T = fetch_alpha(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 5
vec4 T = fetch_rgb(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 6
vec4 T = fetch_gXbY(ivec2(gl_FragCoord.xy));
#elif PS_DEPTH_FMT > 0
vec4 T = sample_depth(st_int, ivec2(gl_FragCoord.xy));
#else
vec4 T = sample_color(st);
#endif
#if PS_SHUFFLE && !PS_SHUFFLE_SAME && !PS_READ16_SRC
uvec4 denorm_c_before = uvec4(T);
#if PS_READ_BA
T.r = float((denorm_c_before.b << 3) & 0xF8);
T.g = float(((denorm_c_before.b >> 2) & 0x38) | ((denorm_c_before.a << 6) & 0xC0));
T.b = float((denorm_c_before.a << 1) & 0xF8);
T.a = float(denorm_c_before.a & 0x80);
#else
T.r = float((denorm_c_before.r << 3) & 0xF8);
T.g = float(((denorm_c_before.r >> 2) & 0x38) | ((denorm_c_before.g << 6) & 0xC0));
T.b = float((denorm_c_before.g << 1) & 0xF8);
T.a = float(denorm_c_before.g & 0x80);
#endif
#endif
vec4 C = tfx(T, vsIn.c);
atst(C);
C = fog(C, vsIn.t.z);
return C;
}
void ps_fbmask(inout vec4 C)
{
#if PS_FBMASK
vec4 RT = trunc(sample_from_rt() * 255.0f + 0.1f);
C = vec4((uvec4(C) & ~FbMask) | (uvec4(RT) & FbMask));
#endif
}
void ps_dither(inout vec3 C, float As)
{
#if PS_DITHER
ivec2 fpos;
#if PS_DITHER == 2
fpos = ivec2(gl_FragCoord.xy);
#else
fpos = ivec2(gl_FragCoord.xy * RcpScaleFactor);
#endif
float value = DitherMatrix[fpos.y & 3][fpos.x & 3];
// The idea here is we add on the dither amount adjusted by the alpha before it goes to the hw blend
// so after the alpha blend the resulting value should be the same as (Cs - Cd) * As + Cd + Dither.
#if PS_DITHER_ADJUST
#if PS_BLEND_C == 2
float Alpha = Af;
#else
float Alpha = As;
#endif
value *= Alpha > 0.0f ? min(1.0f / Alpha, 1.0f) : 1.0f;
#endif
#if PS_ROUND_INV
C -= value;
#else
C += value;
#endif
#endif
}
void ps_color_clamp_wrap(inout vec3 C)
{
// When dithering the bottom 3 bits become meaningless and cause lines in the picture
// so we need to limit the color depth on dithered items
#if SW_BLEND || PS_DITHER || PS_FBMASK
#if PS_DST_FMT == FMT_16 && PS_BLEND_MIX == 0 && PS_ROUND_INV
C += 7.0f; // Need to round up, not down since the shader will invert
#endif
// Correct the Color value based on the output format
#if PS_COLCLIP == 0 && PS_HDR == 0
// Standard Clamp
C = clamp(C, vec3(0.0f), vec3(255.0f));
#endif
// FIXME rouding of negative float?
// compiler uses trunc but it might need floor
// Warning: normally blending equation is mult(A, B) = A * B >> 7. GPU have the full accuracy
// GS: Color = 1, Alpha = 255 => output 1
// GPU: Color = 1/255, Alpha = 255/255 * 255/128 => output 1.9921875
#if PS_DST_FMT == FMT_16 && (PS_BLEND_MIX == 0 || PS_DITHER)
// In 16 bits format, only 5 bits of colors are used. It impacts shadows computation of Castlevania
C = vec3(ivec3(C) & ivec3(0xF8));
#elif PS_COLCLIP == 1 || PS_HDR == 1
C = vec3(ivec3(C) & ivec3(0xFF));
#endif
#endif
}
void ps_blend(inout vec4 Color, inout vec4 As_rgba)
{
float As = As_rgba.a;
#if SW_BLEND
// PABE
#if PS_PABE
// No blending so early exit
if (As < 1.0f)
return;
#endif
#if PS_FEEDBACK_LOOP_IS_NEEDED
vec4 RT = sample_from_rt();
#else
// Not used, but we define it to make the selection below simpler.
vec4 RT = vec4(0.0f);
#endif
#if PS_RTA_CORRECTION
float Ad = trunc(RT.a * 127.5f + 0.05f) / 128.0f;
#else
float Ad = trunc(RT.a * 255.0f + 0.1f) / 128.0f;
#endif
// Let the compiler do its jobs !
vec3 Cd = trunc(RT.rgb * 255.0f + 0.1f);
vec3 Cs = Color.rgb;
#if PS_BLEND_A == 0
vec3 A = Cs;
#elif PS_BLEND_A == 1
vec3 A = Cd;
#else
vec3 A = vec3(0.0f);
#endif
#if PS_BLEND_B == 0
vec3 B = Cs;
#elif PS_BLEND_B == 1
vec3 B = Cd;
#else
vec3 B = vec3(0.0f);
#endif
#if PS_BLEND_C == 0
float C = As;
#elif PS_BLEND_C == 1
float C = Ad;
#else
float C = Af;
#endif
#if PS_BLEND_D == 0
vec3 D = Cs;
#elif PS_BLEND_D == 1
vec3 D = Cd;
#else
vec3 D = vec3(0.0f);
#endif
// As/Af clamp alpha for Blend mix
// We shouldn't clamp blend mix with blend hw 1 as we want alpha higher
float C_clamped = C;
#if PS_BLEND_MIX > 0 && PS_BLEND_HW != 1 && PS_BLEND_HW != 2
C_clamped = min(C_clamped, 1.0f);
#endif
#if PS_BLEND_A == PS_BLEND_B
Color.rgb = D;
// In blend_mix, HW adds on some alpha factor * dst.
// Truncating here wouldn't quite get the right result because it prevents the <1 bit here from combining with a <1 bit in dst to form a ≥1 amount that pushes over the truncation.
// Instead, apply an offset to convert HW's round to a floor.
// Since alpha is in 1/128 increments, subtracting (0.5 - 0.5/128 == 127/256) would get us what we want if GPUs blended in full precision.
// But they don't. Details here: https://github.com/PCSX2/pcsx2/pull/6809#issuecomment-1211473399
// Based on the scripts at the above link, the ideal choice for Intel GPUs is 126/256, AMD 120/256. Nvidia is a lost cause.
// 124/256 seems like a reasonable compromise, providing the correct answer 99.3% of the time on Intel (vs 99.6% for 126/256), and 97% of the time on AMD (vs 97.4% for 120/256).
#elif PS_BLEND_MIX == 2
Color.rgb = ((A - B) * C_clamped + D) + (124.0f/256.0f);
#elif PS_BLEND_MIX == 1
Color.rgb = ((A - B) * C_clamped + D) - (124.0f/256.0f);
#else
Color.rgb = trunc((A - B) * C + D);
#endif
#if PS_BLEND_HW == 1
// As or Af
As_rgba.rgb = vec3(C);
// Subtract 1 for alpha to compensate for the changed equation,
// if c.rgb > 255.0f then we further need to adjust alpha accordingly,
// we pick the lowest overflow from all colors because it's the safest,
// we divide by 255 the color because we don't know Cd value,
// changed alpha should only be done for hw blend.
vec3 alpha_compensate = max(vec3(1.0f), Color.rgb / vec3(255.0f));
As_rgba.rgb -= alpha_compensate;
#elif PS_BLEND_HW == 2
// Since we can't do Cd*(Aalpha + 1) - Cs*Alpha in hw blend
// what we can do is adjust the Cs value that will be
// subtracted, this way we can get a better result in hw blend.
// Result is still wrong but less wrong than before.
float division_alpha = 1.0f + C;
Color.rgb /= vec3(division_alpha);
#elif PS_BLEND_HW == 3
// As, Ad or Af clamped.
As_rgba.rgb = vec3(C_clamped);
// Cs*(Alpha + 1) might overflow, if it does then adjust alpha value
// that is sent on second output to compensate.
vec3 overflow_check = (Color.rgb - vec3(255.0f)) / 255.0f;
vec3 alpha_compensate = max(vec3(0.0f), overflow_check);
As_rgba.rgb -= alpha_compensate;
#endif
#else
#if PS_BLEND_HW == 1
// Needed for Cd * (As/Ad/F + 1) blending modes
Color.rgb = vec3(255.0f);
#elif PS_BLEND_HW == 2
// Cd*As,Cd*Ad or Cd*F
#if PS_BLEND_C == 2
float Alpha = Af;
#else
float Alpha = As;
#endif
Color.rgb = max(vec3(0.0f), (Alpha - vec3(1.0f)));
Color.rgb *= vec3(255.0f);
#elif PS_BLEND_HW == 3
// Needed for Cs*Ad, Cs*Ad + Cd, Cd - Cs*Ad
// Multiply Color.rgb by (255/128) to compensate for wrong Ad/255 value when rgb are below 128.
// When any color channel is higher than 128 then adjust the compensation automatically
// to give us more accurate colors, otherwise they will be wrong.
// The higher the value (>128) the lower the compensation will be.
float max_color = max(max(Color.r, Color.g), Color.b);
float color_compensate = 255.0f / max(128.0f, max_color);
Color.rgb *= vec3(color_compensate);
#endif
#endif
}
void main()
{
#if PS_SCANMSK & 2
// fail depth test on prohibited lines
if ((int(gl_FragCoord.y) & 1) == (PS_SCANMSK & 1))
discard;
#endif
#if PS_DATE >= 5
#if PS_WRITE_RG == 1
// Pseudo 16 bits access.
float rt_a = sample_from_rt().g;
#else
float rt_a = sample_from_rt().a;
#endif
#if (PS_DATE & 3) == 1
// DATM == 0: Pixel with alpha equal to 1 will failed
bool bad = (127.5f / 255.0f) < rt_a;
#elif (PS_DATE & 3) == 2
// DATM == 1: Pixel with alpha equal to 0 will failed
bool bad = rt_a < (127.5f / 255.0f);
#endif
if (bad) {
discard;
}
#endif // PS_DATE >= 5
#if PS_DATE == 3
int stencil_ceil = int(texelFetch(PrimMinTexture, ivec2(gl_FragCoord.xy), 0).r);
// Note gl_PrimitiveID == stencil_ceil will be the primitive that will update
// the bad alpha value so we must keep it.
if (gl_PrimitiveID > stencil_ceil) {
discard;
}
#endif
vec4 C = ps_color();
// Must be done before alpha correction
// AA (Fixed one) will output a coverage of 1.0 as alpha
#if PS_FIXED_ONE_A
C.a = 128.0f;
#endif
#if SW_AD_TO_HW
#if PS_RTA_CORRECTION
vec4 RT = trunc(sample_from_rt() * 127.5f + 0.05f);
#else
vec4 RT = trunc(sample_from_rt() * 255.0f + 0.1f);
#endif
vec4 alpha_blend = vec4(RT.a / 128.0f);
#else
vec4 alpha_blend = vec4(C.a / 128.0f);
#endif
// Correct the ALPHA value based on the output format
#if (PS_DST_FMT == FMT_16)
float A_one = 128.0f; // alpha output will be 0x80
C.a = (PS_FBA != 0) ? A_one : step(128.0f, C.a) * A_one;
#elif (PS_DST_FMT == FMT_32) && (PS_FBA != 0)
if(C.a < 128.0f) C.a += 128.0f;
#endif
// Get first primitive that will write a failling alpha value
#if PS_DATE == 1
// DATM == 0
// Pixel with alpha equal to 1 will failed (128-255)
o_col0 = (C.a > 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF);
#elif PS_DATE == 2
// DATM == 1
// Pixel with alpha equal to 0 will failed (0-127)
o_col0 = (C.a < 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF);
#else
ps_blend(C, alpha_blend);
#if PS_SHUFFLE
#if !PS_SHUFFLE_SAME && !PS_READ16_SRC
uvec4 denorm_c_after = uvec4(C);
#if PS_READ_BA
C.b = float(((denorm_c_after.r >> 3) & 0x1F) | ((denorm_c_after.g << 2) & 0xE0));
C.a = float(((denorm_c_after.g >> 6) & 0x3) | ((denorm_c_after.b >> 1) & 0x7C) | (denorm_c_after.a & 0x80));
#else
C.r = float(((denorm_c_after.r >> 3) & 0x1F) | ((denorm_c_after.g << 2) & 0xE0));
C.g = float(((denorm_c_after.g >> 6) & 0x3) | ((denorm_c_after.b >> 1) & 0x7C) | (denorm_c_after.a & 0x80));
#endif
#endif
uvec4 denorm_c = uvec4(C);
uvec2 denorm_TA = uvec2(vec2(TA.xy) * 255.0f + 0.5f);
// Special case for 32bit input and 16bit output, shuffle used by The Godfather
#if PS_SHUFFLE_SAME
#if (PS_READ_BA)
C = vec4(float((denorm_c.b & 0x7Fu) | (denorm_c.a & 0x80u)));
#else
C.ga = C.rg;
#endif
// Copy of a 16bit source in to this target
#elif PS_READ16_SRC
C.rb = vec2(float((denorm_c.r >> 3) | (((denorm_c.g >> 3) & 0x7u) << 5)));
if ((denorm_c.a & 0x80u) != 0u)
C.ga = vec2(float((denorm_c.g >> 6) | ((denorm_c.b >> 3) << 2) | (denorm_TA.y & 0x80u)));
else
C.ga = vec2(float((denorm_c.g >> 6) | ((denorm_c.b >> 3) << 2) | (denorm_TA.x & 0x80u)));
// Write RB part. Mask will take care of the correct destination
#elif PS_READ_BA
C.rb = C.bb;
if ((denorm_c.a & 0x80u) != 0u)
C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u)));
else
C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u)));
#else
C.rb = C.rr;
if ((denorm_c.g & 0x80u) != 0u)
C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u)));
else
C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u)));
#endif // PS_SHUFFLE_SAME
#endif // PS_SHUFFLE
ps_dither(C.rgb, alpha_blend.a);
// Color clamp/wrap needs to be done after sw blending and dithering
ps_color_clamp_wrap(C.rgb);
ps_fbmask(C);
#if !PS_NO_COLOR
#if PS_RTA_CORRECTION
o_col0.a = C.a / 128.0f;
#else
o_col0.a = C.a / 255.0f;
#endif
#if PS_HDR == 1
o_col0.rgb = vec3(C.rgb / 65535.0f);
#else
o_col0.rgb = C.rgb / 255.0f;
#endif
#if !defined(DISABLE_DUAL_SOURCE) && !PS_NO_COLOR1
o_col1 = alpha_blend;
#endif
#if PS_NO_ABLEND
// write alpha blend factor into col0
o_col0.a = alpha_blend.a;
#endif
#if PS_ONLY_ALPHA
// rgb isn't used
o_col0.rgb = vec3(0.0f);
#endif
#endif
#if PS_ZCLAMP
gl_FragDepth = min(gl_FragCoord.z, MaxDepthPS);
#endif
#endif // PS_DATE
}
#endif