mirror of
https://github.com/PCSX2/pcsx2.git
synced 2025-12-16 04:08:48 +00:00
Otherwise if we do decorrection in covert shader we add more copies. Also make sure to decorrect for fbmask, tex is fb.
1349 lines
31 KiB
GLSL
1349 lines
31 KiB
GLSL
// SPDX-FileCopyrightText: 2002-2023 PCSX2 Dev Team
|
|
// SPDX-License-Identifier: LGPL-3.0+
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Vertex Shader
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
#if defined(VERTEX_SHADER)
|
|
|
|
layout(std140, set = 0, binding = 0) uniform cb0
|
|
{
|
|
vec2 VertexScale;
|
|
vec2 VertexOffset;
|
|
vec2 TextureScale;
|
|
vec2 TextureOffset;
|
|
vec2 PointSize;
|
|
uint MaxDepth;
|
|
uint pad_cb0;
|
|
};
|
|
|
|
layout(location = 0) out VSOutput
|
|
{
|
|
vec4 t;
|
|
vec4 ti;
|
|
|
|
#if VS_IIP != 0
|
|
vec4 c;
|
|
#else
|
|
flat vec4 c;
|
|
#endif
|
|
} vsOut;
|
|
|
|
#if VS_EXPAND == 0
|
|
|
|
layout(location = 0) in vec2 a_st;
|
|
layout(location = 1) in uvec4 a_c;
|
|
layout(location = 2) in float a_q;
|
|
layout(location = 3) in uvec2 a_p;
|
|
layout(location = 4) in uint a_z;
|
|
layout(location = 5) in uvec2 a_uv;
|
|
layout(location = 6) in vec4 a_f;
|
|
|
|
void main()
|
|
{
|
|
// Clamp to max depth, gs doesn't wrap
|
|
uint z = min(a_z, MaxDepth);
|
|
|
|
// pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go)
|
|
// example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty
|
|
// input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel
|
|
// example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133
|
|
|
|
gl_Position = vec4(a_p, float(z), 1.0f) - vec4(0.05f, 0.05f, 0, 0);
|
|
gl_Position.xy = gl_Position.xy * vec2(VertexScale.x, -VertexScale.y) - vec2(VertexOffset.x, -VertexOffset.y);
|
|
gl_Position.z *= exp2(-32.0f); // integer->float depth
|
|
gl_Position.y = -gl_Position.y;
|
|
|
|
#if VS_TME
|
|
vec2 uv = a_uv - TextureOffset;
|
|
vec2 st = a_st - TextureOffset;
|
|
|
|
// Integer nomalized
|
|
vsOut.ti.xy = uv * TextureScale;
|
|
|
|
#if VS_FST
|
|
// Integer integral
|
|
vsOut.ti.zw = uv;
|
|
#else
|
|
// float for post-processing in some games
|
|
vsOut.ti.zw = st / TextureScale;
|
|
#endif
|
|
|
|
// Float coords
|
|
vsOut.t.xy = st;
|
|
vsOut.t.w = a_q;
|
|
#else
|
|
vsOut.t = vec4(0.0f, 0.0f, 0.0f, 1.0f);
|
|
vsOut.ti = vec4(0.0f);
|
|
#endif
|
|
|
|
#if VS_POINT_SIZE
|
|
gl_PointSize = PointSize.x;
|
|
#endif
|
|
|
|
vsOut.c = vec4(a_c);
|
|
vsOut.t.z = a_f.r;
|
|
}
|
|
|
|
#else // VS_EXPAND
|
|
|
|
struct RawVertex
|
|
{
|
|
vec2 ST;
|
|
uint RGBA;
|
|
float Q;
|
|
uint XY;
|
|
uint Z;
|
|
uint UV;
|
|
uint FOG;
|
|
};
|
|
|
|
layout(std140, set = 0, binding = 2) readonly buffer VertexBuffer {
|
|
RawVertex vertex_buffer[];
|
|
};
|
|
|
|
struct ProcessedVertex
|
|
{
|
|
vec4 p;
|
|
vec4 t;
|
|
vec4 ti;
|
|
vec4 c;
|
|
};
|
|
|
|
ProcessedVertex load_vertex(uint index)
|
|
{
|
|
RawVertex rvtx = vertex_buffer[gl_BaseVertexARB + index];
|
|
|
|
vec2 a_st = rvtx.ST;
|
|
uvec4 a_c = uvec4(bitfieldExtract(rvtx.RGBA, 0, 8), bitfieldExtract(rvtx.RGBA, 8, 8),
|
|
bitfieldExtract(rvtx.RGBA, 16, 8), bitfieldExtract(rvtx.RGBA, 24, 8));
|
|
float a_q = rvtx.Q;
|
|
uvec2 a_p = uvec2(bitfieldExtract(rvtx.XY, 0, 16), bitfieldExtract(rvtx.XY, 16, 16));
|
|
uint a_z = rvtx.Z;
|
|
uvec2 a_uv = uvec2(bitfieldExtract(rvtx.UV, 0, 16), bitfieldExtract(rvtx.UV, 16, 16));
|
|
vec4 a_f = unpackUnorm4x8(rvtx.FOG);
|
|
|
|
ProcessedVertex vtx;
|
|
|
|
uint z = min(a_z, MaxDepth);
|
|
vtx.p = vec4(a_p, float(z), 1.0f) - vec4(0.05f, 0.05f, 0, 0);
|
|
vtx.p.xy = vtx.p.xy * vec2(VertexScale.x, -VertexScale.y) - vec2(VertexOffset.x, -VertexOffset.y);
|
|
vtx.p.z *= exp2(-32.0f); // integer->float depth
|
|
vtx.p.y = -vtx.p.y;
|
|
|
|
#if VS_TME
|
|
vec2 uv = a_uv - TextureOffset;
|
|
vec2 st = a_st - TextureOffset;
|
|
vtx.ti.xy = uv * TextureScale;
|
|
|
|
#if VS_FST
|
|
vtx.ti.zw = uv;
|
|
#else
|
|
vtx.ti.zw = st / TextureScale;
|
|
#endif
|
|
|
|
vtx.t.xy = st;
|
|
vtx.t.w = a_q;
|
|
#else
|
|
vtx.t = vec4(0.0f, 0.0f, 0.0f, 1.0f);
|
|
vtx.ti = vec4(0.0f);
|
|
#endif
|
|
|
|
vtx.c = a_c;
|
|
vtx.t.z = a_f.r;
|
|
|
|
return vtx;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
ProcessedVertex vtx;
|
|
uint vid = uint(gl_VertexIndex - gl_BaseVertexARB);
|
|
|
|
#if VS_EXPAND == 1 // Point
|
|
|
|
vtx = load_vertex(vid >> 2);
|
|
|
|
vtx.p.x += ((vid & 1u) != 0u) ? PointSize.x : 0.0f;
|
|
vtx.p.y += ((vid & 2u) != 0u) ? PointSize.y : 0.0f;
|
|
|
|
#elif VS_EXPAND == 2 // Line
|
|
|
|
uint vid_base = vid >> 2;
|
|
|
|
bool is_bottom = (vid & 2u) != 0u;
|
|
bool is_right = (vid & 1u) != 0u;
|
|
#ifdef VS_PROVOKING_VERTEX_LAST
|
|
uint vid_other = is_bottom ? vid_base - 1 : vid_base + 1;
|
|
#else
|
|
uint vid_other = is_bottom ? vid_base + 1 : vid_base - 1;
|
|
#endif
|
|
|
|
vtx = load_vertex(vid_base);
|
|
ProcessedVertex other = load_vertex(vid_other);
|
|
|
|
vec2 line_vector = normalize(vtx.p.xy - other.p.xy);
|
|
vec2 line_normal = vec2(line_vector.y, -line_vector.x);
|
|
vec2 line_width = (line_normal * PointSize) / 2;
|
|
// line_normal is inverted for bottom point
|
|
vec2 offset = ((uint(is_bottom) ^ uint(is_right)) != 0u) ? line_width : -line_width;
|
|
vtx.p.xy += offset;
|
|
|
|
// Lines will be run as (0 1 2) (1 2 3)
|
|
// This means that both triangles will have a point based off the top line point as their first point
|
|
// So we don't have to do anything for !IIP
|
|
|
|
#elif VS_EXPAND == 3 // Sprite
|
|
|
|
// Sprite points are always in pairs
|
|
uint vid_base = vid >> 1;
|
|
uint vid_lt = vid_base & ~1u;
|
|
uint vid_rb = vid_base | 1u;
|
|
|
|
ProcessedVertex lt = load_vertex(vid_lt);
|
|
ProcessedVertex rb = load_vertex(vid_rb);
|
|
vtx = rb;
|
|
|
|
bool is_right = ((vid & 1u) != 0u);
|
|
vtx.p.x = is_right ? lt.p.x : vtx.p.x;
|
|
vtx.t.x = is_right ? lt.t.x : vtx.t.x;
|
|
vtx.ti.xz = is_right ? lt.ti.xz : vtx.ti.xz;
|
|
|
|
bool is_bottom = ((vid & 2u) != 0u);
|
|
vtx.p.y = is_bottom ? lt.p.y : vtx.p.y;
|
|
vtx.t.y = is_bottom ? lt.t.y : vtx.t.y;
|
|
vtx.ti.yw = is_bottom ? lt.ti.yw : vtx.ti.yw;
|
|
|
|
#endif
|
|
|
|
gl_Position = vtx.p;
|
|
vsOut.t = vtx.t;
|
|
vsOut.ti = vtx.ti;
|
|
vsOut.c = vtx.c;
|
|
}
|
|
|
|
#endif // VS_EXPAND
|
|
|
|
#endif // VERTEX_SHADER
|
|
|
|
#ifdef FRAGMENT_SHADER
|
|
|
|
#define FMT_32 0
|
|
#define FMT_24 1
|
|
#define FMT_16 2
|
|
|
|
#ifndef VS_TME
|
|
#define VS_TME 1
|
|
#define VS_FST 1
|
|
#endif
|
|
|
|
#ifndef GS_IIP
|
|
#define GS_IIP 0
|
|
#define GS_PRIM 3
|
|
#define GS_POINT 0
|
|
#define GS_LINE 0
|
|
#endif
|
|
|
|
#ifndef PS_FST
|
|
#define PS_FST 0
|
|
#define PS_WMS 0
|
|
#define PS_WMT 0
|
|
#define PS_ADJS 0
|
|
#define PS_ADJT 0
|
|
#define PS_FMT FMT_32
|
|
#define PS_AEM 0
|
|
#define PS_TFX 0
|
|
#define PS_TCC 1
|
|
#define PS_ATST 1
|
|
#define PS_FOG 0
|
|
#define PS_BLEND_HW 0
|
|
#define PS_A_MASKED 0
|
|
#define PS_FBA 0
|
|
#define PS_FBMASK 0
|
|
#define PS_LTF 1
|
|
#define PS_TCOFFSETHACK 0
|
|
#define PS_POINT_SAMPLER 0
|
|
#define PS_SHUFFLE 0
|
|
#define PS_SHUFFLE_SAME 0
|
|
#define PS_READ_BA 0
|
|
#define PS_WRITE_RG 0
|
|
#define PS_READ16_SRC 0
|
|
#define PS_DST_FMT 0
|
|
#define PS_DEPTH_FMT 0
|
|
#define PS_PAL_FMT 0
|
|
#define PS_CHANNEL_FETCH 0
|
|
#define PS_TALES_OF_ABYSS_HLE 0
|
|
#define PS_URBAN_CHAOS_HLE 0
|
|
#define PS_HDR 0
|
|
#define PS_COLCLIP 0
|
|
#define PS_BLEND_A 0
|
|
#define PS_BLEND_B 0
|
|
#define PS_BLEND_C 0
|
|
#define PS_BLEND_D 0
|
|
#define PS_FIXED_ONE_A 0
|
|
#define PS_PABE 0
|
|
#define PS_DITHER 0
|
|
#define PS_DITHER_ADJUST 0
|
|
#define PS_ZCLAMP 0
|
|
#define PS_FEEDBACK_LOOP 0
|
|
#define PS_TEX_IS_FB 0
|
|
#endif
|
|
|
|
#define SW_BLEND (PS_BLEND_A || PS_BLEND_B || PS_BLEND_D)
|
|
#define SW_BLEND_NEEDS_RT (SW_BLEND && (PS_BLEND_A == 1 || PS_BLEND_B == 1 || PS_BLEND_C == 1 || PS_BLEND_D == 1))
|
|
#define SW_AD_TO_HW (PS_BLEND_C == 1 && PS_A_MASKED)
|
|
|
|
#define PS_FEEDBACK_LOOP_IS_NEEDED (PS_TEX_IS_FB == 1 || PS_FBMASK || SW_BLEND_NEEDS_RT || SW_AD_TO_HW || (PS_DATE >= 5))
|
|
|
|
#define NEEDS_TEX (PS_TFX != 4)
|
|
|
|
layout(std140, set = 0, binding = 1) uniform cb1
|
|
{
|
|
vec3 FogColor;
|
|
float AREF;
|
|
vec4 WH;
|
|
vec2 TA;
|
|
float MaxDepthPS;
|
|
float Af;
|
|
uvec4 FbMask;
|
|
vec4 HalfTexel;
|
|
vec4 MinMax;
|
|
vec4 STRange;
|
|
ivec4 ChannelShuffle;
|
|
vec2 TC_OffsetHack;
|
|
vec2 STScale;
|
|
mat4 DitherMatrix;
|
|
float ScaledScaleFactor;
|
|
float RcpScaleFactor;
|
|
};
|
|
|
|
layout(location = 0) in VSOutput
|
|
{
|
|
vec4 t;
|
|
vec4 ti;
|
|
#if PS_IIP != 0
|
|
vec4 c;
|
|
#else
|
|
flat vec4 c;
|
|
#endif
|
|
} vsIn;
|
|
|
|
#if !defined(DISABLE_DUAL_SOURCE) && !PS_NO_COLOR1
|
|
layout(location = 0, index = 0) out vec4 o_col0;
|
|
layout(location = 0, index = 1) out vec4 o_col1;
|
|
#elif !PS_NO_COLOR
|
|
layout(location = 0) out vec4 o_col0;
|
|
#endif
|
|
|
|
#if NEEDS_TEX
|
|
layout(set = 1, binding = 0) uniform sampler2D Texture;
|
|
layout(set = 1, binding = 1) uniform texture2D Palette;
|
|
#endif
|
|
|
|
#if PS_FEEDBACK_LOOP_IS_NEEDED
|
|
#if defined(DISABLE_TEXTURE_BARRIER) || defined(HAS_FEEDBACK_LOOP_LAYOUT)
|
|
layout(set = 1, binding = 2) uniform texture2D RtSampler;
|
|
vec4 sample_from_rt() { return texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0); }
|
|
#else
|
|
layout(input_attachment_index = 0, set = 1, binding = 2) uniform subpassInput RtSampler;
|
|
vec4 sample_from_rt() { return subpassLoad(RtSampler); }
|
|
#endif
|
|
#endif
|
|
|
|
#if PS_DATE > 0
|
|
layout(set = 1, binding = 3) uniform texture2D PrimMinTexture;
|
|
#endif
|
|
|
|
#if NEEDS_TEX
|
|
|
|
vec4 sample_c(vec2 uv)
|
|
{
|
|
#if PS_TEX_IS_FB
|
|
return sample_from_rt();
|
|
#elif PS_REGION_RECT
|
|
return texelFetch(Texture, ivec2(uv), 0);
|
|
#else
|
|
#if PS_POINT_SAMPLER
|
|
// Weird issue with ATI/AMD cards,
|
|
// it looks like they add 127/128 of a texel to sampling coordinates
|
|
// occasionally causing point sampling to erroneously round up.
|
|
// I'm manually adjusting coordinates to the centre of texels here,
|
|
// though the centre is just paranoia, the top left corner works fine.
|
|
// As of 2018 this issue is still present.
|
|
uv = (trunc(uv * WH.zw) + vec2(0.5, 0.5)) / WH.zw;
|
|
#endif
|
|
#if !PS_ADJS && !PS_ADJT
|
|
uv *= STScale;
|
|
#else
|
|
#if PS_ADJS
|
|
uv.x = (uv.x - STRange.x) * STRange.z;
|
|
#else
|
|
uv.x = uv.x * STScale.x;
|
|
#endif
|
|
#if PS_ADJT
|
|
uv.y = (uv.y - STRange.y) * STRange.w;
|
|
#else
|
|
uv.y = uv.y * STScale.y;
|
|
#endif
|
|
#endif
|
|
|
|
#if PS_AUTOMATIC_LOD == 1
|
|
return texture(Texture, uv);
|
|
#elif PS_MANUAL_LOD == 1
|
|
// FIXME add LOD: K - ( LOG2(Q) * (1 << L))
|
|
float K = MinMax.x;
|
|
float L = MinMax.y;
|
|
float bias = MinMax.z;
|
|
float max_lod = MinMax.w;
|
|
|
|
float gs_lod = K - log2(abs(vsIn.t.w)) * L;
|
|
// FIXME max useful ?
|
|
//float lod = max(min(gs_lod, max_lod) - bias, 0.0f);
|
|
float lod = min(gs_lod, max_lod) - bias;
|
|
|
|
return textureLod(Texture, uv, lod);
|
|
#else
|
|
return textureLod(Texture, uv, 0); // No lod
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
vec4 sample_p(uint idx)
|
|
{
|
|
return texelFetch(Palette, ivec2(int(idx), 0), 0);
|
|
}
|
|
|
|
vec4 sample_p_norm(float u)
|
|
{
|
|
return sample_p(uint(u * 255.5f));
|
|
}
|
|
|
|
vec4 clamp_wrap_uv(vec4 uv)
|
|
{
|
|
vec4 tex_size = WH.xyxy;
|
|
|
|
#if PS_WMS == PS_WMT
|
|
{
|
|
#if PS_REGION_RECT == 1 && PS_WMS == 0
|
|
{
|
|
uv = fract(uv);
|
|
}
|
|
#elif PS_REGION_RECT == 1 && PS_WMS == 1
|
|
{
|
|
uv = clamp(uv, vec4(0.0f), vec4(1.0f));
|
|
}
|
|
#elif PS_WMS == 2
|
|
{
|
|
uv = clamp(uv, MinMax.xyxy, MinMax.zwzw);
|
|
}
|
|
#elif PS_WMS == 3
|
|
{
|
|
#if PS_FST == 0
|
|
// wrap negative uv coords to avoid an off by one error that shifted
|
|
// textures. Fixes Xenosaga's hair issue.
|
|
uv = fract(uv);
|
|
#endif
|
|
uv = vec4((uvec4(uv * tex_size) & floatBitsToUint(MinMax.xyxy)) | floatBitsToUint(MinMax.zwzw)) / tex_size;
|
|
}
|
|
#endif
|
|
}
|
|
#else
|
|
{
|
|
#if PS_REGION_RECT == 1 && PS_WMS == 0
|
|
{
|
|
uv.xz = fract(uv.xz);
|
|
}
|
|
#elif PS_REGION_RECT == 1 && PS_WMS == 1
|
|
{
|
|
uv.xz = clamp(uv.xz, vec2(0.0f), vec2(1.0f));
|
|
}
|
|
#elif PS_WMS == 2
|
|
{
|
|
uv.xz = clamp(uv.xz, MinMax.xx, MinMax.zz);
|
|
}
|
|
#elif PS_WMS == 3
|
|
{
|
|
#if PS_FST == 0
|
|
uv.xz = fract(uv.xz);
|
|
#endif
|
|
uv.xz = vec2((uvec2(uv.xz * tex_size.xx) & floatBitsToUint(MinMax.xx)) | floatBitsToUint(MinMax.zz)) / tex_size.xx;
|
|
}
|
|
#endif
|
|
#if PS_REGION_RECT == 1 && PS_WMT == 0
|
|
{
|
|
uv.yw = fract(uv.yw);
|
|
}
|
|
#elif PS_REGION_RECT == 1 && PS_WMT == 1
|
|
{
|
|
uv.yw = clamp(uv.yw, vec2(0.0f), vec2(1.0f));
|
|
}
|
|
#elif PS_WMT == 2
|
|
{
|
|
uv.yw = clamp(uv.yw, MinMax.yy, MinMax.ww);
|
|
}
|
|
#elif PS_WMT == 3
|
|
{
|
|
#if PS_FST == 0
|
|
uv.yw = fract(uv.yw);
|
|
#endif
|
|
uv.yw = vec2((uvec2(uv.yw * tex_size.yy) & floatBitsToUint(MinMax.yy)) | floatBitsToUint(MinMax.ww)) / tex_size.yy;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if PS_REGION_RECT == 1
|
|
// Normalized -> Integer Coordinates.
|
|
uv = clamp(uv * WH.zwzw + STRange.xyxy, STRange.xyxy, STRange.zwzw);
|
|
#endif
|
|
|
|
return uv;
|
|
}
|
|
|
|
mat4 sample_4c(vec4 uv)
|
|
{
|
|
mat4 c;
|
|
|
|
c[0] = sample_c(uv.xy);
|
|
c[1] = sample_c(uv.zy);
|
|
c[2] = sample_c(uv.xw);
|
|
c[3] = sample_c(uv.zw);
|
|
|
|
return c;
|
|
}
|
|
|
|
uvec4 sample_4_index(vec4 uv)
|
|
{
|
|
vec4 c;
|
|
|
|
c.x = sample_c(uv.xy).a;
|
|
c.y = sample_c(uv.zy).a;
|
|
c.z = sample_c(uv.xw).a;
|
|
c.w = sample_c(uv.zw).a;
|
|
|
|
// Denormalize value
|
|
uvec4 i = uvec4(c * 255.5f);
|
|
|
|
#if PS_PAL_FMT == 1
|
|
// 4HL
|
|
return i & 0xFu;
|
|
#elif PS_PAL_FMT == 2
|
|
// 4HH
|
|
return i >> 4u;
|
|
#else
|
|
// 8
|
|
return i;
|
|
#endif
|
|
}
|
|
|
|
mat4 sample_4p(uvec4 u)
|
|
{
|
|
mat4 c;
|
|
|
|
c[0] = sample_p(u.x);
|
|
c[1] = sample_p(u.y);
|
|
c[2] = sample_p(u.z);
|
|
c[3] = sample_p(u.w);
|
|
|
|
return c;
|
|
}
|
|
|
|
int fetch_raw_depth(ivec2 xy)
|
|
{
|
|
#if PS_TEX_IS_FB
|
|
vec4 col = sample_from_rt();
|
|
#else
|
|
vec4 col = texelFetch(Texture, xy, 0);
|
|
#endif
|
|
return int(col.r * exp2(32.0f));
|
|
}
|
|
|
|
vec4 fetch_raw_color(ivec2 xy)
|
|
{
|
|
#if PS_TEX_IS_FB
|
|
return sample_from_rt();
|
|
#else
|
|
return texelFetch(Texture, xy, 0);
|
|
#endif
|
|
}
|
|
|
|
vec4 fetch_c(ivec2 uv)
|
|
{
|
|
#if PS_TEX_IS_FB
|
|
return sample_from_rt();
|
|
#else
|
|
return texelFetch(Texture, uv, 0);
|
|
#endif
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Depth sampling
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
ivec2 clamp_wrap_uv_depth(ivec2 uv)
|
|
{
|
|
ivec4 mask = floatBitsToInt(MinMax) << 4;
|
|
#if (PS_WMS == PS_WMT)
|
|
{
|
|
#if (PS_WMS == 2)
|
|
{
|
|
uv = clamp(uv, mask.xy, mask.zw);
|
|
}
|
|
#elif (PS_WMS == 3)
|
|
{
|
|
uv = (uv & mask.xy) | mask.zw;
|
|
}
|
|
#endif
|
|
}
|
|
#else
|
|
{
|
|
#if (PS_WMS == 2)
|
|
{
|
|
uv.x = clamp(uv.x, mask.x, mask.z);
|
|
}
|
|
#elif (PS_WMS == 3)
|
|
{
|
|
uv.x = (uv.x & mask.x) | mask.z;
|
|
}
|
|
#endif
|
|
#if (PS_WMT == 2)
|
|
{
|
|
uv.y = clamp(uv.y, mask.y, mask.w);
|
|
}
|
|
#elif (PS_WMT == 3)
|
|
{
|
|
uv.y = (uv.y & mask.y) | mask.w;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
return uv;
|
|
}
|
|
|
|
vec4 sample_depth(vec2 st, ivec2 pos)
|
|
{
|
|
vec2 uv_f = vec2(clamp_wrap_uv_depth(ivec2(st))) * vec2(ScaledScaleFactor);
|
|
|
|
#if PS_REGION_RECT == 1
|
|
uv_f = clamp(uv_f + STRange.xy, STRange.xy, STRange.zw);
|
|
#endif
|
|
|
|
ivec2 uv = ivec2(uv_f);
|
|
vec4 t = vec4(0.0f);
|
|
|
|
#if (PS_TALES_OF_ABYSS_HLE == 1)
|
|
{
|
|
// Warning: UV can't be used in channel effect
|
|
int depth = fetch_raw_depth(pos);
|
|
|
|
// Convert msb based on the palette
|
|
t = texelFetch(Palette, ivec2((depth >> 8) & 0xFF, 0), 0) * 255.0f;
|
|
}
|
|
#elif (PS_URBAN_CHAOS_HLE == 1)
|
|
{
|
|
// Depth buffer is read as a RGB5A1 texture. The game try to extract the green channel.
|
|
// So it will do a first channel trick to extract lsb, value is right-shifted.
|
|
// Then a new channel trick to extract msb which will shifted to the left.
|
|
// OpenGL uses a vec32 format for the depth so it requires a couple of conversion.
|
|
// To be faster both steps (msb&lsb) are done in a single pass.
|
|
|
|
// Warning: UV can't be used in channel effect
|
|
int depth = fetch_raw_depth(pos);
|
|
|
|
// Convert lsb based on the palette
|
|
t = texelFetch(Palette, ivec2(depth & 0xFF, 0), 0) * 255.0f;
|
|
|
|
// Msb is easier
|
|
float green = float(((depth >> 8) & 0xFF) * 36.0f);
|
|
green = min(green, 255.0f);
|
|
t.g += green;
|
|
}
|
|
#elif (PS_DEPTH_FMT == 1)
|
|
{
|
|
// Based on ps_convert_float32_rgba8 of convert
|
|
|
|
// Convert a vec32 depth texture into a RGBA color texture
|
|
uint d = uint(fetch_c(uv).r * exp2(32.0f));
|
|
t = vec4(uvec4((d & 0xFFu), ((d >> 8) & 0xFFu), ((d >> 16) & 0xFFu), (d >> 24)));
|
|
}
|
|
#elif (PS_DEPTH_FMT == 2)
|
|
{
|
|
// Based on ps_convert_float16_rgb5a1 of convert
|
|
|
|
// Convert a vec32 (only 16 lsb) depth into a RGB5A1 color texture
|
|
uint d = uint(fetch_c(uv).r * exp2(32.0f));
|
|
t = vec4(uvec4((d & 0x1Fu), ((d >> 5) & 0x1Fu), ((d >> 10) & 0x1Fu), (d >> 15) & 0x01u)) * vec4(8.0f, 8.0f, 8.0f, 128.0f);
|
|
}
|
|
#elif (PS_DEPTH_FMT == 3)
|
|
{
|
|
// Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture
|
|
t = fetch_c(uv) * 255.0f;
|
|
}
|
|
#endif
|
|
|
|
#if (PS_AEM_FMT == FMT_24)
|
|
{
|
|
t.a = ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f;
|
|
}
|
|
#elif (PS_AEM_FMT == FMT_16)
|
|
{
|
|
t.a = t.a >= 128.0f ? 255.0f * TA.y : ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f;
|
|
}
|
|
#elif PS_PAL_FMT != 0 && !PS_TALES_OF_ABYSS_HLE && !PS_URBAN_CHAOS_HLE
|
|
{
|
|
t = trunc(sample_4p(uvec4(t.aaaa))[0] * 255.0f + 0.05f);
|
|
}
|
|
#endif
|
|
|
|
return t;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Fetch a Single Channel
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
vec4 fetch_red(ivec2 xy)
|
|
{
|
|
vec4 rt;
|
|
|
|
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
|
|
int depth = (fetch_raw_depth(xy)) & 0xFF;
|
|
rt = vec4(float(depth) / 255.0f);
|
|
#else
|
|
rt = fetch_raw_color(xy);
|
|
#endif
|
|
|
|
return sample_p_norm(rt.r) * 255.0f;
|
|
}
|
|
|
|
vec4 fetch_green(ivec2 xy)
|
|
{
|
|
vec4 rt;
|
|
|
|
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
|
|
int depth = (fetch_raw_depth(xy) >> 8) & 0xFF;
|
|
rt = vec4(float(depth) / 255.0f);
|
|
#else
|
|
rt = fetch_raw_color(xy);
|
|
#endif
|
|
|
|
return sample_p_norm(rt.g) * 255.0f;
|
|
}
|
|
|
|
vec4 fetch_blue(ivec2 xy)
|
|
{
|
|
vec4 rt;
|
|
|
|
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
|
|
int depth = (fetch_raw_depth(xy) >> 16) & 0xFF;
|
|
rt = vec4(float(depth) / 255.0f);
|
|
#else
|
|
rt = fetch_raw_color(xy);
|
|
#endif
|
|
|
|
return sample_p_norm(rt.b) * 255.0f;
|
|
}
|
|
|
|
vec4 fetch_alpha(ivec2 xy)
|
|
{
|
|
vec4 rt = fetch_raw_color(xy);
|
|
return sample_p_norm(rt.a) * 255.0f;
|
|
}
|
|
|
|
vec4 fetch_rgb(ivec2 xy)
|
|
{
|
|
vec4 rt = fetch_raw_color(xy);
|
|
vec4 c = vec4(sample_p_norm(rt.r).r, sample_p_norm(rt.g).g, sample_p_norm(rt.b).b, 1.0);
|
|
return c * 255.0f;
|
|
}
|
|
|
|
vec4 fetch_gXbY(ivec2 xy)
|
|
{
|
|
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
|
|
int depth = fetch_raw_depth(xy);
|
|
int bg = (depth >> (8 + ChannelShuffle.w)) & 0xFF;
|
|
return vec4(bg);
|
|
#else
|
|
ivec4 rt = ivec4(fetch_raw_color(xy) * 255.0);
|
|
int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z;
|
|
int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x;
|
|
return vec4(float(green | blue));
|
|
#endif
|
|
}
|
|
|
|
vec4 sample_color(vec2 st)
|
|
{
|
|
#if PS_TCOFFSETHACK
|
|
st += TC_OffsetHack.xy;
|
|
#endif
|
|
|
|
vec4 t;
|
|
mat4 c;
|
|
vec2 dd;
|
|
|
|
#if PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_REGION_RECT == 0 && PS_WMS < 2 && PS_WMT < 2
|
|
{
|
|
c[0] = sample_c(st);
|
|
}
|
|
#else
|
|
{
|
|
vec4 uv;
|
|
|
|
#if PS_LTF
|
|
{
|
|
uv = st.xyxy + HalfTexel;
|
|
dd = fract(uv.xy * WH.zw);
|
|
|
|
#if PS_FST == 0
|
|
{
|
|
dd = clamp(dd, vec2(0.0f), vec2(0.9999999f));
|
|
}
|
|
#endif
|
|
}
|
|
#else
|
|
{
|
|
uv = st.xyxy;
|
|
}
|
|
#endif
|
|
|
|
uv = clamp_wrap_uv(uv);
|
|
|
|
#if PS_PAL_FMT != 0
|
|
c = sample_4p(sample_4_index(uv));
|
|
#else
|
|
c = sample_4c(uv);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
for (uint i = 0; i < 4; i++)
|
|
{
|
|
#if (PS_AEM_FMT == FMT_24)
|
|
c[i].a = (PS_AEM == 0 || any(bvec3(c[i].rgb))) ? TA.x : 0.0f;
|
|
#elif (PS_AEM_FMT == FMT_16)
|
|
c[i].a = (c[i].a >= 0.5) ? TA.y : ((PS_AEM == 0 || any(bvec3(ivec3(c[i].rgb * 255.0f) & ivec3(0xF8)))) ? TA.x : 0.0f);
|
|
#endif
|
|
}
|
|
|
|
#if PS_LTF
|
|
{
|
|
t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y);
|
|
}
|
|
#else
|
|
{
|
|
t = c[0];
|
|
}
|
|
#endif
|
|
|
|
return trunc(t * 255.0f + 0.05f);
|
|
}
|
|
|
|
#endif // NEEDS_TEX
|
|
|
|
vec4 tfx(vec4 T, vec4 C)
|
|
{
|
|
vec4 C_out;
|
|
vec4 FxT = trunc((C * T) / 128.0f);
|
|
|
|
#if (PS_TFX == 0)
|
|
C_out = FxT;
|
|
#elif (PS_TFX == 1)
|
|
C_out = T;
|
|
#elif (PS_TFX == 2)
|
|
C_out.rgb = FxT.rgb + C.a;
|
|
C_out.a = T.a + C.a;
|
|
#elif (PS_TFX == 3)
|
|
C_out.rgb = FxT.rgb + C.a;
|
|
C_out.a = T.a;
|
|
#else
|
|
C_out = C;
|
|
#endif
|
|
|
|
#if (PS_TCC == 0)
|
|
C_out.a = C.a;
|
|
#endif
|
|
|
|
#if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3)
|
|
// Clamp only when it is useful
|
|
C_out = min(C_out, 255.0f);
|
|
#endif
|
|
|
|
return C_out;
|
|
}
|
|
|
|
void atst(vec4 C)
|
|
{
|
|
float a = C.a;
|
|
|
|
#if (PS_ATST == 0)
|
|
{
|
|
// nothing to do
|
|
}
|
|
#elif (PS_ATST == 1)
|
|
{
|
|
if (a > AREF) discard;
|
|
}
|
|
#elif (PS_ATST == 2)
|
|
{
|
|
if (a < AREF) discard;
|
|
}
|
|
#elif (PS_ATST == 3)
|
|
{
|
|
if (abs(a - AREF) > 0.5f) discard;
|
|
}
|
|
#elif (PS_ATST == 4)
|
|
{
|
|
if (abs(a - AREF) < 0.5f) discard;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
vec4 fog(vec4 c, float f)
|
|
{
|
|
#if PS_FOG
|
|
c.rgb = trunc(mix(FogColor, c.rgb, f));
|
|
#endif
|
|
|
|
return c;
|
|
}
|
|
|
|
vec4 ps_color()
|
|
{
|
|
#if PS_FST == 0
|
|
vec2 st = vsIn.t.xy / vsIn.t.w;
|
|
vec2 st_int = vsIn.ti.zw / vsIn.t.w;
|
|
#else
|
|
vec2 st = vsIn.ti.xy;
|
|
vec2 st_int = vsIn.ti.zw;
|
|
#endif
|
|
|
|
#if !NEEDS_TEX
|
|
vec4 T = vec4(0.0f);
|
|
#elif PS_CHANNEL_FETCH == 1
|
|
vec4 T = fetch_red(ivec2(gl_FragCoord.xy));
|
|
#elif PS_CHANNEL_FETCH == 2
|
|
vec4 T = fetch_green(ivec2(gl_FragCoord.xy));
|
|
#elif PS_CHANNEL_FETCH == 3
|
|
vec4 T = fetch_blue(ivec2(gl_FragCoord.xy));
|
|
#elif PS_CHANNEL_FETCH == 4
|
|
vec4 T = fetch_alpha(ivec2(gl_FragCoord.xy));
|
|
#elif PS_CHANNEL_FETCH == 5
|
|
vec4 T = fetch_rgb(ivec2(gl_FragCoord.xy));
|
|
#elif PS_CHANNEL_FETCH == 6
|
|
vec4 T = fetch_gXbY(ivec2(gl_FragCoord.xy));
|
|
#elif PS_DEPTH_FMT > 0
|
|
vec4 T = sample_depth(st_int, ivec2(gl_FragCoord.xy));
|
|
#else
|
|
vec4 T = sample_color(st);
|
|
#endif
|
|
|
|
#if PS_SHUFFLE && !PS_SHUFFLE_SAME && !PS_READ16_SRC
|
|
uvec4 denorm_c_before = uvec4(T);
|
|
#if PS_READ_BA
|
|
T.r = float((denorm_c_before.b << 3) & 0xF8);
|
|
T.g = float(((denorm_c_before.b >> 2) & 0x38) | ((denorm_c_before.a << 6) & 0xC0));
|
|
T.b = float((denorm_c_before.a << 1) & 0xF8);
|
|
T.a = float(denorm_c_before.a & 0x80);
|
|
#else
|
|
T.r = float((denorm_c_before.r << 3) & 0xF8);
|
|
T.g = float(((denorm_c_before.r >> 2) & 0x38) | ((denorm_c_before.g << 6) & 0xC0));
|
|
T.b = float((denorm_c_before.g << 1) & 0xF8);
|
|
T.a = float(denorm_c_before.g & 0x80);
|
|
#endif
|
|
#endif
|
|
|
|
vec4 C = tfx(T, vsIn.c);
|
|
|
|
atst(C);
|
|
|
|
C = fog(C, vsIn.t.z);
|
|
|
|
return C;
|
|
}
|
|
|
|
void ps_fbmask(inout vec4 C)
|
|
{
|
|
#if PS_FBMASK
|
|
vec4 RT = trunc(sample_from_rt() * 255.0f + 0.1f);
|
|
C = vec4((uvec4(C) & ~FbMask) | (uvec4(RT) & FbMask));
|
|
#endif
|
|
}
|
|
|
|
void ps_dither(inout vec3 C, float As)
|
|
{
|
|
#if PS_DITHER
|
|
ivec2 fpos;
|
|
|
|
#if PS_DITHER == 2
|
|
fpos = ivec2(gl_FragCoord.xy);
|
|
#else
|
|
fpos = ivec2(gl_FragCoord.xy * RcpScaleFactor);
|
|
#endif
|
|
|
|
float value = DitherMatrix[fpos.y & 3][fpos.x & 3];
|
|
|
|
// The idea here is we add on the dither amount adjusted by the alpha before it goes to the hw blend
|
|
// so after the alpha blend the resulting value should be the same as (Cs - Cd) * As + Cd + Dither.
|
|
#if PS_DITHER_ADJUST
|
|
#if PS_BLEND_C == 2
|
|
float Alpha = Af;
|
|
#else
|
|
float Alpha = As;
|
|
#endif
|
|
|
|
value *= Alpha > 0.0f ? min(1.0f / Alpha, 1.0f) : 1.0f;
|
|
#endif
|
|
|
|
#if PS_ROUND_INV
|
|
C -= value;
|
|
#else
|
|
C += value;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void ps_color_clamp_wrap(inout vec3 C)
|
|
{
|
|
// When dithering the bottom 3 bits become meaningless and cause lines in the picture
|
|
// so we need to limit the color depth on dithered items
|
|
#if SW_BLEND || PS_DITHER || PS_FBMASK
|
|
|
|
#if PS_DST_FMT == FMT_16 && PS_BLEND_MIX == 0 && PS_ROUND_INV
|
|
C += 7.0f; // Need to round up, not down since the shader will invert
|
|
#endif
|
|
|
|
// Correct the Color value based on the output format
|
|
#if PS_COLCLIP == 0 && PS_HDR == 0
|
|
// Standard Clamp
|
|
C = clamp(C, vec3(0.0f), vec3(255.0f));
|
|
#endif
|
|
|
|
// FIXME rouding of negative float?
|
|
// compiler uses trunc but it might need floor
|
|
|
|
// Warning: normally blending equation is mult(A, B) = A * B >> 7. GPU have the full accuracy
|
|
// GS: Color = 1, Alpha = 255 => output 1
|
|
// GPU: Color = 1/255, Alpha = 255/255 * 255/128 => output 1.9921875
|
|
#if PS_DST_FMT == FMT_16 && (PS_BLEND_MIX == 0 || PS_DITHER)
|
|
// In 16 bits format, only 5 bits of colors are used. It impacts shadows computation of Castlevania
|
|
C = vec3(ivec3(C) & ivec3(0xF8));
|
|
#elif PS_COLCLIP == 1 || PS_HDR == 1
|
|
C = vec3(ivec3(C) & ivec3(0xFF));
|
|
#endif
|
|
|
|
#endif
|
|
}
|
|
|
|
void ps_blend(inout vec4 Color, inout vec4 As_rgba)
|
|
{
|
|
float As = As_rgba.a;
|
|
|
|
#if SW_BLEND
|
|
|
|
// PABE
|
|
#if PS_PABE
|
|
// No blending so early exit
|
|
if (As < 1.0f)
|
|
return;
|
|
#endif
|
|
|
|
#if PS_FEEDBACK_LOOP_IS_NEEDED
|
|
vec4 RT = sample_from_rt();
|
|
#else
|
|
// Not used, but we define it to make the selection below simpler.
|
|
vec4 RT = vec4(0.0f);
|
|
#endif
|
|
|
|
#if PS_RTA_CORRECTION
|
|
float Ad = trunc(RT.a * 127.5f + 0.05f) / 128.0f;
|
|
#else
|
|
float Ad = trunc(RT.a * 255.0f + 0.1f) / 128.0f;
|
|
#endif
|
|
|
|
// Let the compiler do its jobs !
|
|
vec3 Cd = trunc(RT.rgb * 255.0f + 0.1f);
|
|
vec3 Cs = Color.rgb;
|
|
|
|
#if PS_BLEND_A == 0
|
|
vec3 A = Cs;
|
|
#elif PS_BLEND_A == 1
|
|
vec3 A = Cd;
|
|
#else
|
|
vec3 A = vec3(0.0f);
|
|
#endif
|
|
|
|
#if PS_BLEND_B == 0
|
|
vec3 B = Cs;
|
|
#elif PS_BLEND_B == 1
|
|
vec3 B = Cd;
|
|
#else
|
|
vec3 B = vec3(0.0f);
|
|
#endif
|
|
|
|
#if PS_BLEND_C == 0
|
|
float C = As;
|
|
#elif PS_BLEND_C == 1
|
|
float C = Ad;
|
|
#else
|
|
float C = Af;
|
|
#endif
|
|
|
|
#if PS_BLEND_D == 0
|
|
vec3 D = Cs;
|
|
#elif PS_BLEND_D == 1
|
|
vec3 D = Cd;
|
|
#else
|
|
vec3 D = vec3(0.0f);
|
|
#endif
|
|
|
|
// As/Af clamp alpha for Blend mix
|
|
// We shouldn't clamp blend mix with blend hw 1 as we want alpha higher
|
|
float C_clamped = C;
|
|
#if PS_BLEND_MIX > 0 && PS_BLEND_HW != 1 && PS_BLEND_HW != 2
|
|
C_clamped = min(C_clamped, 1.0f);
|
|
#endif
|
|
|
|
#if PS_BLEND_A == PS_BLEND_B
|
|
Color.rgb = D;
|
|
// In blend_mix, HW adds on some alpha factor * dst.
|
|
// Truncating here wouldn't quite get the right result because it prevents the <1 bit here from combining with a <1 bit in dst to form a ≥1 amount that pushes over the truncation.
|
|
// Instead, apply an offset to convert HW's round to a floor.
|
|
// Since alpha is in 1/128 increments, subtracting (0.5 - 0.5/128 == 127/256) would get us what we want if GPUs blended in full precision.
|
|
// But they don't. Details here: https://github.com/PCSX2/pcsx2/pull/6809#issuecomment-1211473399
|
|
// Based on the scripts at the above link, the ideal choice for Intel GPUs is 126/256, AMD 120/256. Nvidia is a lost cause.
|
|
// 124/256 seems like a reasonable compromise, providing the correct answer 99.3% of the time on Intel (vs 99.6% for 126/256), and 97% of the time on AMD (vs 97.4% for 120/256).
|
|
#elif PS_BLEND_MIX == 2
|
|
Color.rgb = ((A - B) * C_clamped + D) + (124.0f/256.0f);
|
|
#elif PS_BLEND_MIX == 1
|
|
Color.rgb = ((A - B) * C_clamped + D) - (124.0f/256.0f);
|
|
#else
|
|
Color.rgb = trunc((A - B) * C + D);
|
|
#endif
|
|
|
|
#if PS_BLEND_HW == 1
|
|
// As or Af
|
|
As_rgba.rgb = vec3(C);
|
|
// Subtract 1 for alpha to compensate for the changed equation,
|
|
// if c.rgb > 255.0f then we further need to adjust alpha accordingly,
|
|
// we pick the lowest overflow from all colors because it's the safest,
|
|
// we divide by 255 the color because we don't know Cd value,
|
|
// changed alpha should only be done for hw blend.
|
|
vec3 alpha_compensate = max(vec3(1.0f), Color.rgb / vec3(255.0f));
|
|
As_rgba.rgb -= alpha_compensate;
|
|
#elif PS_BLEND_HW == 2
|
|
// Since we can't do Cd*(Aalpha + 1) - Cs*Alpha in hw blend
|
|
// what we can do is adjust the Cs value that will be
|
|
// subtracted, this way we can get a better result in hw blend.
|
|
// Result is still wrong but less wrong than before.
|
|
float division_alpha = 1.0f + C;
|
|
Color.rgb /= vec3(division_alpha);
|
|
#elif PS_BLEND_HW == 3
|
|
// As, Ad or Af clamped.
|
|
As_rgba.rgb = vec3(C_clamped);
|
|
// Cs*(Alpha + 1) might overflow, if it does then adjust alpha value
|
|
// that is sent on second output to compensate.
|
|
vec3 overflow_check = (Color.rgb - vec3(255.0f)) / 255.0f;
|
|
vec3 alpha_compensate = max(vec3(0.0f), overflow_check);
|
|
As_rgba.rgb -= alpha_compensate;
|
|
#endif
|
|
|
|
#else
|
|
#if PS_BLEND_HW == 1
|
|
// Needed for Cd * (As/Ad/F + 1) blending modes
|
|
Color.rgb = vec3(255.0f);
|
|
#elif PS_BLEND_HW == 2
|
|
// Cd*As,Cd*Ad or Cd*F
|
|
|
|
#if PS_BLEND_C == 2
|
|
float Alpha = Af;
|
|
#else
|
|
float Alpha = As;
|
|
#endif
|
|
|
|
Color.rgb = max(vec3(0.0f), (Alpha - vec3(1.0f)));
|
|
Color.rgb *= vec3(255.0f);
|
|
#elif PS_BLEND_HW == 3
|
|
// Needed for Cs*Ad, Cs*Ad + Cd, Cd - Cs*Ad
|
|
// Multiply Color.rgb by (255/128) to compensate for wrong Ad/255 value when rgb are below 128.
|
|
// When any color channel is higher than 128 then adjust the compensation automatically
|
|
// to give us more accurate colors, otherwise they will be wrong.
|
|
// The higher the value (>128) the lower the compensation will be.
|
|
float max_color = max(max(Color.r, Color.g), Color.b);
|
|
float color_compensate = 255.0f / max(128.0f, max_color);
|
|
Color.rgb *= vec3(color_compensate);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void main()
|
|
{
|
|
#if PS_SCANMSK & 2
|
|
// fail depth test on prohibited lines
|
|
if ((int(gl_FragCoord.y) & 1) == (PS_SCANMSK & 1))
|
|
discard;
|
|
#endif
|
|
#if PS_DATE >= 5
|
|
|
|
#if PS_WRITE_RG == 1
|
|
// Pseudo 16 bits access.
|
|
float rt_a = sample_from_rt().g;
|
|
#else
|
|
float rt_a = sample_from_rt().a;
|
|
#endif
|
|
|
|
#if (PS_DATE & 3) == 1
|
|
// DATM == 0: Pixel with alpha equal to 1 will failed
|
|
bool bad = (127.5f / 255.0f) < rt_a;
|
|
#elif (PS_DATE & 3) == 2
|
|
// DATM == 1: Pixel with alpha equal to 0 will failed
|
|
bool bad = rt_a < (127.5f / 255.0f);
|
|
#endif
|
|
|
|
if (bad) {
|
|
discard;
|
|
}
|
|
|
|
#endif // PS_DATE >= 5
|
|
|
|
#if PS_DATE == 3
|
|
int stencil_ceil = int(texelFetch(PrimMinTexture, ivec2(gl_FragCoord.xy), 0).r);
|
|
// Note gl_PrimitiveID == stencil_ceil will be the primitive that will update
|
|
// the bad alpha value so we must keep it.
|
|
|
|
if (gl_PrimitiveID > stencil_ceil) {
|
|
discard;
|
|
}
|
|
#endif
|
|
|
|
vec4 C = ps_color();
|
|
|
|
// Must be done before alpha correction
|
|
|
|
// AA (Fixed one) will output a coverage of 1.0 as alpha
|
|
#if PS_FIXED_ONE_A
|
|
C.a = 128.0f;
|
|
#endif
|
|
|
|
#if SW_AD_TO_HW
|
|
#if PS_RTA_CORRECTION
|
|
vec4 RT = trunc(sample_from_rt() * 127.5f + 0.05f);
|
|
#else
|
|
vec4 RT = trunc(sample_from_rt() * 255.0f + 0.1f);
|
|
#endif
|
|
|
|
vec4 alpha_blend = vec4(RT.a / 128.0f);
|
|
#else
|
|
vec4 alpha_blend = vec4(C.a / 128.0f);
|
|
#endif
|
|
|
|
// Correct the ALPHA value based on the output format
|
|
#if (PS_DST_FMT == FMT_16)
|
|
float A_one = 128.0f; // alpha output will be 0x80
|
|
C.a = (PS_FBA != 0) ? A_one : step(128.0f, C.a) * A_one;
|
|
#elif (PS_DST_FMT == FMT_32) && (PS_FBA != 0)
|
|
if(C.a < 128.0f) C.a += 128.0f;
|
|
#endif
|
|
|
|
// Get first primitive that will write a failling alpha value
|
|
#if PS_DATE == 1
|
|
|
|
// DATM == 0
|
|
// Pixel with alpha equal to 1 will failed (128-255)
|
|
o_col0 = (C.a > 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF);
|
|
|
|
#elif PS_DATE == 2
|
|
|
|
// DATM == 1
|
|
// Pixel with alpha equal to 0 will failed (0-127)
|
|
o_col0 = (C.a < 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF);
|
|
|
|
#else
|
|
ps_blend(C, alpha_blend);
|
|
|
|
#if PS_SHUFFLE
|
|
#if !PS_SHUFFLE_SAME && !PS_READ16_SRC
|
|
uvec4 denorm_c_after = uvec4(C);
|
|
#if PS_READ_BA
|
|
C.b = float(((denorm_c_after.r >> 3) & 0x1F) | ((denorm_c_after.g << 2) & 0xE0));
|
|
C.a = float(((denorm_c_after.g >> 6) & 0x3) | ((denorm_c_after.b >> 1) & 0x7C) | (denorm_c_after.a & 0x80));
|
|
#else
|
|
C.r = float(((denorm_c_after.r >> 3) & 0x1F) | ((denorm_c_after.g << 2) & 0xE0));
|
|
C.g = float(((denorm_c_after.g >> 6) & 0x3) | ((denorm_c_after.b >> 1) & 0x7C) | (denorm_c_after.a & 0x80));
|
|
#endif
|
|
#endif
|
|
|
|
uvec4 denorm_c = uvec4(C);
|
|
uvec2 denorm_TA = uvec2(vec2(TA.xy) * 255.0f + 0.5f);
|
|
|
|
// Special case for 32bit input and 16bit output, shuffle used by The Godfather
|
|
#if PS_SHUFFLE_SAME
|
|
#if (PS_READ_BA)
|
|
C = vec4(float((denorm_c.b & 0x7Fu) | (denorm_c.a & 0x80u)));
|
|
#else
|
|
C.ga = C.rg;
|
|
#endif
|
|
// Copy of a 16bit source in to this target
|
|
#elif PS_READ16_SRC
|
|
C.rb = vec2(float((denorm_c.r >> 3) | (((denorm_c.g >> 3) & 0x7u) << 5)));
|
|
if ((denorm_c.a & 0x80u) != 0u)
|
|
C.ga = vec2(float((denorm_c.g >> 6) | ((denorm_c.b >> 3) << 2) | (denorm_TA.y & 0x80u)));
|
|
else
|
|
C.ga = vec2(float((denorm_c.g >> 6) | ((denorm_c.b >> 3) << 2) | (denorm_TA.x & 0x80u)));
|
|
// Write RB part. Mask will take care of the correct destination
|
|
#elif PS_READ_BA
|
|
C.rb = C.bb;
|
|
if ((denorm_c.a & 0x80u) != 0u)
|
|
C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u)));
|
|
else
|
|
C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u)));
|
|
#else
|
|
C.rb = C.rr;
|
|
if ((denorm_c.g & 0x80u) != 0u)
|
|
C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u)));
|
|
else
|
|
C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u)));
|
|
#endif // PS_SHUFFLE_SAME
|
|
#endif // PS_SHUFFLE
|
|
|
|
ps_dither(C.rgb, alpha_blend.a);
|
|
|
|
// Color clamp/wrap needs to be done after sw blending and dithering
|
|
ps_color_clamp_wrap(C.rgb);
|
|
|
|
ps_fbmask(C);
|
|
|
|
#if !PS_NO_COLOR
|
|
#if PS_RTA_CORRECTION
|
|
o_col0.a = C.a / 128.0f;
|
|
#else
|
|
o_col0.a = C.a / 255.0f;
|
|
#endif
|
|
#if PS_HDR == 1
|
|
o_col0.rgb = vec3(C.rgb / 65535.0f);
|
|
#else
|
|
o_col0.rgb = C.rgb / 255.0f;
|
|
#endif
|
|
#if !defined(DISABLE_DUAL_SOURCE) && !PS_NO_COLOR1
|
|
o_col1 = alpha_blend;
|
|
#endif
|
|
|
|
#if PS_NO_ABLEND
|
|
// write alpha blend factor into col0
|
|
o_col0.a = alpha_blend.a;
|
|
#endif
|
|
#if PS_ONLY_ALPHA
|
|
// rgb isn't used
|
|
o_col0.rgb = vec3(0.0f);
|
|
#endif
|
|
#endif
|
|
|
|
#if PS_ZCLAMP
|
|
gl_FragDepth = min(gl_FragCoord.z, MaxDepthPS);
|
|
#endif
|
|
|
|
#endif // PS_DATE
|
|
}
|
|
|
|
#endif
|