pcsx2/pcsx2/GS/Renderers/SW/GSRendererSW.cpp
Ty ca5377299a
Some checks failed
🐧 Linux Builds / AppImage (push) Has been cancelled
🐧 Linux Builds / Flatpak (push) Has been cancelled
🍎 MacOS Builds / Defaults (push) Has been cancelled
🖥️ Windows Builds / Lint VS Project Files (push) Has been cancelled
🖥️ Windows Builds / CMake (push) Has been cancelled
🖥️ Windows Builds / SSE4 (push) Has been cancelled
🖥️ Windows Builds / AVX2 (push) Has been cancelled
GS SW: Use implicit GSVector4i int32x4_t conversion
2025-12-07 18:41:49 -05:00

1671 lines
44 KiB
C++

// SPDX-FileCopyrightText: 2002-2025 PCSX2 Dev Team
// SPDX-License-Identifier: GPL-3.0+
#include "GS/Renderers/SW/GSRendererSW.h"
#include "GS/GSGL.h"
#include "GS/GSPng.h"
#include "GS/GSUtil.h"
#include "common/StringUtil.h"
MULTI_ISA_UNSHARED_IMPL;
GSRenderer* CURRENT_ISA::makeGSRendererSW(int threads)
{
return new GSRendererSW(threads);
}
#define LOG 0
[[maybe_unused]] static FILE* s_fp = LOG ? fopen("c:\\temp1\\_.txt", "w") : nullptr;
static constexpr GSVector4 s_pos_scale = GSVector4::cxpr(1.0f / 16, 1.0f / 16, 1.0f, 128.0f);
GSRendererSW::GSRendererSW(int threads)
: GSRenderer(), m_fzb(NULL)
{
m_nativeres = true; // ignore ini, sw is always native
m_tc = std::make_unique<GSTextureCacheSW>();
m_rl = GSRasterizerList::Create(threads);
m_output = (u8*)_aligned_malloc(1024 * 1024 * sizeof(u32), VECTOR_ALIGNMENT);
std::fill(std::begin(m_fzb_pages), std::end(m_fzb_pages), 0);
std::fill(std::begin(m_tex_pages), std::end(m_tex_pages), 0);
}
GSRendererSW::~GSRendererSW()
{
// strictly speaking we should always be destroyed when the destructor runs..
// except if an exception gets thrown during construction. this will go once
// we get rid of exceptions...
GSRendererSW::Destroy();
}
void GSRendererSW::Reset(bool hardware_reset)
{
Sync(-1);
m_tc->RemoveAll();
GSRenderer::Reset(hardware_reset);
}
void GSRendererSW::Destroy()
{
// Need to destroy worker queue first to stop any pending thread work
m_rl.reset();
m_tc.reset();
for (GSTexture*& tex : m_texture)
{
delete tex;
tex = nullptr;
}
_aligned_free(m_output);
m_output = nullptr;
}
void GSRendererSW::VSync(u32 field, bool registers_written, bool idle_frame)
{
Sync(0); // IncAge might delete a cached texture in use
/*
int draw[8], sum = 0;
for(size_t i = 0; i < std::size(draw); i++)
{
draw[i] = m_perfmon.CPU(GSPerfMon::WorkerDraw0 + i);
sum += draw[i];
}
printf("CPU %d Sync %d W %d %d %d %d %d %d %d %d (%d)\n",
m_perfmon.CPU(GSPerfMon::Main),
m_perfmon.CPU(GSPerfMon::Sync),
draw[0], draw[1], draw[2], draw[3], draw[4], draw[5], draw[6], draw[7], sum);
//
*/
GSRenderer::VSync(field, registers_written, idle_frame);
m_tc->IncAge();
m_draw_transfers.clear();
// if ((m_perfmon.GetFrame() & 255) == 0) m_rl->PrintStats();
}
GSTexture* GSRendererSW::GetOutput(int i, float& scale, int& y_offset)
{
Sync(1);
int index = i >= 0 ? i : 1;
GSPCRTCRegs::PCRTCDisplay& curFramebuffer = PCRTCDisplays.PCRTCDisplays[index];
GSVector2i framebufferSize = PCRTCDisplays.GetFramebufferSize(i);
GSVector4i framebufferRect = PCRTCDisplays.GetFramebufferRect(i);
// Try to avoid broken/incomplete setups which are probably ingnored on console, but can cause us problems.
if (framebufferRect.rempty() || curFramebuffer.FBW == 0)
return nullptr;
const int w = curFramebuffer.FBW * 64;
const int h = framebufferSize.y;
if (g_gs_device->ResizeRenderTarget(&m_texture[index], w, h, false, false))
{
const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[curFramebuffer.PSM];
constexpr int pitch = 1024 * 4;
// Should really be framebufferOffsets rather than framebufferRect but this might be compensated with anti-blur in some games.
const int off_x = (framebufferRect.x & 0x7ff) & ~(psm.bs.x-1);
const int off_x_end = ((framebufferRect.x & 0x7ff) + (psm.bs.x - 1)) & ~(psm.bs.x - 1);
const int off_y = (framebufferRect.y & 0x7ff) & ~(psm.bs.y-1);
const int off_y_end = ((framebufferRect.y & 0x7ff) + (psm.bs.y - 1)) & ~(psm.bs.y - 1);
const GSVector4i out_r(0, 0, w, h);
GSVector4i r(off_x, off_y, w + off_x_end, h + off_y_end);
GSVector4i rh(off_x, off_y, w + off_x_end, (h + off_y_end) & 0x7FF);
GSVector4i rw(off_x, off_y, (w + off_x_end) & 0x7FF, h + off_y_end);
bool h_wrap = false;
bool w_wrap = false;
PCRTCDisplays.RemoveFramebufferOffset(i);
// Need to read it in 2 parts, since you can't do a split rect.
if (r.bottom >= 2048)
{
r.bottom = 2048;
rw.bottom = 2048;
rh.top = 0;
h_wrap = true;
}
if (r.right >= 2048)
{
r.right = 2048;
rh.right = 2048;
rw.left = 0;
w_wrap = true;
}
// Display doesn't use texa, and instead uses the equivalent of this
GIFRegTEXA texa = {};
texa.AEM = 0;
texa.TA0 = (curFramebuffer.PSM == PSMCT24 || curFramebuffer.PSM == PSGPU24) ? 0x80 : 0;
texa.TA1 = 0x80;
// Top left rect
psm.rtx(m_mem, m_mem.GetOffset(curFramebuffer.Block(), curFramebuffer.FBW, curFramebuffer.PSM), r.ralign<Align_Outside>(psm.bs), m_output, pitch, texa);
int top = (h_wrap) ? ((r.bottom - r.top) * pitch) : 0;
int left = (w_wrap) ? (r.right - r.left) * (GSLocalMemory::m_psm[curFramebuffer.PSM].bpp / 8) : 0;
// The following only happen if the DBX/DBY wrap around at 2048.
// Top right rect
if (w_wrap)
psm.rtx(m_mem, m_mem.GetOffset(curFramebuffer.Block(), curFramebuffer.FBW, curFramebuffer.PSM), rw.ralign<Align_Outside>(psm.bs), &m_output[left], pitch, texa);
// Bottom left rect
if (h_wrap)
psm.rtx(m_mem, m_mem.GetOffset(curFramebuffer.Block(), curFramebuffer.FBW, curFramebuffer.PSM), rh.ralign<Align_Outside>(psm.bs), &m_output[top], pitch, texa);
// Bottom right rect
if (h_wrap && w_wrap)
{
// Needs also rw with the start/end height of rh, fills in the bottom right rect which will be missing if both overflow.
const GSVector4i rwh(rw.left, rh.top, rw.right, rh.bottom);
psm.rtx(m_mem, m_mem.GetOffset(curFramebuffer.Block(), curFramebuffer.FBW, curFramebuffer.PSM), rwh.ralign<Align_Outside>(psm.bs), &m_output[top + left], pitch, texa);
}
m_texture[index]->Update(out_r, m_output, pitch);
if (GSConfig.SaveFrame && GSConfig.ShouldDump(s_n, g_perfmon.GetFrame()))
{
m_texture[index]->Save(GetDrawDumpPath("%05d_f%05lld_fr%d_%05x_%s.bmp", s_n, g_perfmon.GetFrame(), i, (int)curFramebuffer.Block(), GSUtil::GetPSMName(curFramebuffer.PSM)));
}
}
scale = 1.0f;
return m_texture[index];
}
GSTexture* GSRendererSW::GetFeedbackOutput(float& scale)
{
int dummy;
// It is enough to emulate Xenosaga cutscene. (or any game that will do a basic loopback)
for (int i = 0; i < 2; i++)
{
if (m_regs->EXTBUF.EXBP == m_regs->DISP[i].DISPFB.Block())
return GetOutput(i, scale, dummy);
}
return nullptr;
}
MULTI_ISA_DEF(void GSVertexSWInitStatic();)
#if MULTI_ISA_COMPILE_ONCE
GSVertexSW::ConvertVertexBufferPtr GSVertexSW::s_cvb[4][2][2][2];
void GSVertexSW::InitStatic()
{
MULTI_ISA_SELECT(GSVertexSWInitStatic)();
}
#endif
MULTI_ISA_UNSHARED_START
template <u32 primclass, u32 tme, u32 fst, u32 q_div>
void ConvertVertexBuffer(const GSDrawingContext* RESTRICT ctx, GSVertexSW* RESTRICT dst, const GSVertex* RESTRICT src, u32 count)
{
// FIXME q_div wasn't added to AVX2 code path.
GSVector4i off = (GSVector4i)ctx->XYOFFSET;
GSVector4 tsize = GSVector4(0x10000 << ctx->TEX0.TW, 0x10000 << ctx->TEX0.TH, 1, 0);
GSVector4i z_max = GSVector4i::xffffffff().srl32(GSLocalMemory::m_psm[ctx->ZBUF.PSM].fmt * 8);
for (int i = (int)count; i > 0; i--, src++, dst++)
{
GSVector4 stcq = GSVector4::load<true>(&src->m[0]); // s t rgba q
GSVector4i xyzuvf(src->m[1]);
GSVector4i xy = xyzuvf.upl16() - off;
dst->c = GSVector4(GSVector4i::cast(stcq).zzzz().u8to32() << 7);
GSVector4 t = GSVector4::zero();
if (tme)
{
if (fst)
{
t = GSVector4(xyzuvf.uph16() << (16 - 4));
}
else if (q_div)
{
// Division is required if number are huge (Pro Soccer Club)
if (primclass == GS_SPRITE_CLASS && (i & 1) == 0)
{
// q(n) isn't valid, you need to take q(n+1)
const GSVertex* next = src + 1;
GSVector4 stcq1 = GSVector4::load<true>(&next->m[0]); // s t rgba q
t = (stcq / stcq1.wwww()) * tsize;
}
else
{
t = (stcq / stcq.wwww()) * tsize;
}
}
else
{
t = stcq.xyww() * tsize;
}
}
if (primclass == GS_SPRITE_CLASS)
{
dst->p = GSVector4(xy).xyyw(GSVector4(xyzuvf)) * s_pos_scale;
xyzuvf = xyzuvf.min_u32(z_max);
t = t.insert32<1, 3>(GSVector4::cast(xyzuvf));
}
else
{
double z = static_cast<double>(static_cast<u32>(xyzuvf.extract32<1>()));
dst->p = (GSVector4(xy) * s_pos_scale).upld(GSVector4::f64(z, 0.0));
t = t.blend32<8>(GSVector4(xyzuvf << 7));
}
dst->t = t;
#if 0 //_M_SSE >= 0x501
dst->_pad = GSVector4::zero();
#endif
}
}
// Fix ST coordinates that would overflow the rasterizer fixed point format by rewriting the vertices.
template <u32 primclass>
void GSRendererSW::RewriteVerticesIfSTOverflow()
{
if (PRIM->TME && PRIM->FST == 0)
{
const GSVector4 tsize = GSVector4(
static_cast<float>(1 << m_context->TEX0.TW),
static_cast<float>(1 << m_context->TEX0.TH),
1.0f,
1.0f);
// SW rasterizer stores UV in 1.15.16 format so clamp to +/- (2^15 - 2) (-2 so bilinear doesn't overflow).
// Do the division by texture size here to avoid divisions for each vertex.
const GSVector4 OVERFLOW_VAL = GSVector4::cxpr(static_cast<float>((1 << 15) - 2)) / tsize;
// Only rewrite big/small S or T when the clamping mode is CLAMP or REGION_CLAMP.
const GSVector4i clamp_mode = GSVector4i(
(m_context->CLAMP.WMS == CLAMP_CLAMP || m_context->CLAMP.WMS == CLAMP_REGION_CLAMP) ? 0xFFFFFFFF : 0,
(m_context->CLAMP.WMT == CLAMP_CLAMP || m_context->CLAMP.WMT == CLAMP_REGION_CLAMP) ? 0xFFFFFFFF : 0,
0,
0);
const bool st_overflow =
((GSVector4i::cast(m_vt.m_min.t <= -OVERFLOW_VAL * tsize) & clamp_mode).mask() & 3) ||
((GSVector4i::cast(m_vt.m_max.t >= OVERFLOW_VAL * tsize) & clamp_mode).mask() & 3) ||
m_vt.nan.value;
if (st_overflow)
{
constexpr int n = GSUtil::GetClassVertexCount(primclass);
// Make sure the copy buffer is large enough.
while (m_vertex.maxcount < m_index.tail)
GrowVertexBuffer();
GSVertex* RESTRICT vertex = m_vertex.buff;
GSVertex* RESTRICT vertex_copy = m_vertex.buff_copy;
u16* RESTRICT index = m_index.buff;
for (int i = 0; i < static_cast<int>(m_index.tail); i += n)
{
GSVector4 stcq[n];
// Load STQ for this primitive.
for (int j = 0; j < n; j++)
stcq[j] = GSVector4::cast(GSVector4i(vertex[index[i + j]].m[0]));
// Perform Q division and see which values need to be rewritten.
GSVector4 uv[n];
GSVector4i small{}, big{}, nan{};
for (int j = 0; j < n; j++)
{
// For sprites always use Q of second vertex.
const GSVector4 q = primclass == GS_SPRITE_CLASS ? stcq[1].wwww() : stcq[j].wwww();
uv[j] = (stcq[j] / q).xyzw(GSVector4::zero());
small |= GSVector4i::cast(uv[j] <= -OVERFLOW_VAL);
big |= GSVector4i::cast(uv[j] >= OVERFLOW_VAL);
nan |= GSVector4i::cast(uv[j] != uv[j]);
}
// Get the new values for fields that will be rewritten.
// The follows rules are used:
// 1. If there are small values but not big or nans, make all vertices small.
// 2. If there are big values but not small or nans, make all vertices big.
// 3. If there are both big and small values, or nans, make all vertices zero.
GSVector4 uv_new = GSVector4::zero();
uv_new = uv_new.blend32(-OVERFLOW_VAL, GSVector4::cast(small));
uv_new = uv_new.blend32(OVERFLOW_VAL, GSVector4::cast(big));
uv_new = uv_new.blend32(GSVector4::zero(), GSVector4::cast((small & big) | nan));
const GSVector4i rewrite = (((small | big) & clamp_mode) | nan).upl64(GSVector4i::zero());
// If both S and T are rewritten, no point in keeping Q. Just set it to 1.0f;
if ((GSVector4::cast(rewrite).mask() & 3) == 3)
{
for (int j = 0; j < n; j++)
stcq[j] = stcq[j].template insert32<0, 3>(GSVector4::m_one);
}
// Rewrite the fields that require it and write to the copy buffer.
for (int j = 0; j < n; j++)
{
// For sprites always use Q of second vertex.
const GSVector4 q = (primclass == GS_SPRITE_CLASS) ? stcq[1].wwww() : stcq[j].wwww();
stcq[j] = stcq[j].blend32(uv_new * q, GSVector4::cast(rewrite));
vertex_copy[i + j].m[0] = GSVector4i::cast(stcq[j]);
vertex_copy[i + j].m[1] = vertex[index[i + j]].m[1];
index[i + j] = i + j;
}
}
// Swap the buffers and fix the counts.
std::swap(m_vertex.buff, m_vertex.buff_copy);
m_vertex.head = m_vertex.next = m_vertex.tail = m_index.tail;
// Recalculate ST min/max/eq in the vertex trace.
GSVector4 tmin = GSVector4::cxpr(FLT_MAX);
GSVector4 tmax = GSVector4::cxpr(-FLT_MAX);
for (int i = 0; i < static_cast<int>(m_index.tail); i += n)
{
for (int j = 0; j < n; j++)
{
GSVector4 stcq = GSVector4::cast(GSVector4i(m_vertex.buff[i + j].m[0]));
const float Q = (primclass == GS_SPRITE_CLASS) ? stcq.w : m_vertex.buff[i + 1].RGBAQ.Q;
stcq = (stcq / Q).xyzw(stcq);
tmin = tmin.min(stcq);
tmax = tmax.max(stcq);
}
}
m_vt.m_min.t = tmin.xyww() * tsize;
m_vt.m_max.t = tmax.xyww() * tsize;
m_vt.m_eq.stq = (m_vt.m_min.t == m_vt.m_max.t).mask();
}
}
}
void GSVertexSWInitStatic()
{
#define InitCVB4(P, T, F, Q) GSVertexSW::s_cvb[P][T][F][Q] = ConvertVertexBuffer<P, T, F, Q>;
#define InitCVB3(P, T, F) InitCVB4(P, T, F, 0) InitCVB4(P, T, F, 1)
#define InitCVB2(P, T) InitCVB3(P, T, 0) InitCVB3(P, T, 1)
#define InitCVB1(P) InitCVB2(P, 0) InitCVB2(P, 1)
InitCVB1(GS_POINT_CLASS)
InitCVB1(GS_LINE_CLASS)
InitCVB1(GS_TRIANGLE_CLASS)
InitCVB1(GS_SPRITE_CLASS)
#undef InitCVB1
#undef InitCVB2
#undef InitCVB3
#undef InitCVB4
}
MULTI_ISA_UNSHARED_END
void GSRendererSW::Draw()
{
const GSDrawingContext* context = m_context;
switch (m_vt.m_primclass)
{
case GS_POINT_CLASS:
RewriteVerticesIfSTOverflow<GS_POINT_CLASS>();
break;
case GS_LINE_CLASS:
RewriteVerticesIfSTOverflow<GS_LINE_CLASS>();
break;
case GS_TRIANGLE_CLASS:
RewriteVerticesIfSTOverflow<GS_TRIANGLE_CLASS>();
break;
case GS_SPRITE_CLASS:
RewriteVerticesIfSTOverflow<GS_SPRITE_CLASS>();
break;
default:
pxFailRel("Unknown primitive class.");
break;
}
auto data = m_vertex_heap.make_shared<SharedData>().cast<GSRasterizerData>();
SharedData* sd = static_cast<SharedData*>(data.get());
sd->primclass = m_vt.m_primclass;
sd->buff = (u8*)m_vertex_heap.alloc(sizeof(GSVertexSW) * ((m_vertex.next + 1) & ~1) + sizeof(u32) * m_index.tail, 64);
sd->vertex = (GSVertexSW*)sd->buff;
sd->vertex_count = m_vertex.next;
sd->index = (u16*)(sd->buff + sizeof(GSVertexSW) * ((m_vertex.next + 1) & ~1));
sd->index_count = m_index.tail;
sd->scanmsk_value = m_draw_env->SCANMSK.MSK;
// skip per pixel division if q is constant.
// Optimize the division by 1 with a nop. It also means that GS_SPRITE_CLASS must be processed when !m_vt.m_eq.q.
// If you have both GS_SPRITE_CLASS && m_vt.m_eq.q, it will depends on the first part of the 'OR'
u32 q_div = !IsMipMapActive() && ((m_vt.m_eq.q && m_vt.m_min.t.z != 1.0f) || (!m_vt.m_eq.q && m_vt.m_primclass == GS_SPRITE_CLASS));
GSVertexSW::s_cvb[m_vt.m_primclass][PRIM->TME][PRIM->FST][q_div](m_context, sd->vertex, m_vertex.buff, m_vertex.next);
std::memcpy(sd->index, m_index.buff, sizeof(u16) * m_index.tail);
GSVector4i scissor = context->scissor.in;
GSVector4i bbox = GSVector4i(m_vt.m_min.p.floor().upld(m_vt.m_max.p.floor())) + GSVector4i(0, 0, 1, 1); // right/bottom should be exclusive so +1
GSVector4i r = bbox.rintersect(scissor);
sd->scissor = scissor;
sd->bbox = bbox;
sd->frame = g_perfmon.GetFrame();
if (!GetScanlineGlobalData(sd))
{
return;
}
if constexpr (LOG && false)
{
int n = GSUtil::GetVertexCount(PRIM->PRIM);
for (u32 i = 0, j = 0; i < m_index.tail; i += n, j++)
{
for (int k = 0; k < n; k++)
{
GSVertex* v = &m_vertex.buff[m_index.buff[i + k]];
GSVertex* vn = &m_vertex.buff[m_index.buff[i + n - 1]];
fprintf(s_fp, "%d:%d %f %f %f %f\n",
j, k,
(float)(v->XYZ.X - context->XYOFFSET.OFX) / 16,
(float)(v->XYZ.Y - context->XYOFFSET.OFY) / 16,
PRIM->FST ? (float)(v->U) / 16 : v->ST.S / (PRIM->PRIM == GS_SPRITE ? vn->RGBAQ.Q : v->RGBAQ.Q),
PRIM->FST ? (float)(v->V) / 16 : v->ST.T / (PRIM->PRIM == GS_SPRITE ? vn->RGBAQ.Q : v->RGBAQ.Q));
}
}
}
//
// GSScanlineGlobalData& gd = sd->global;
GSOffset::PageLooper* fb_pages = NULL;
GSOffset::PageLooper* zb_pages = NULL;
GSOffset::PageLooper _fb_pages, _zb_pages;
if (sd->global.sel.fb)
{
_fb_pages = m_context->offset.fb.pageLooperForRect(r);
fb_pages = &_fb_pages;
}
if (sd->global.sel.zb)
{
_zb_pages = m_context->offset.zb.pageLooperForRect(r);
zb_pages = &_zb_pages;
}
// check if there is an overlap between this and previous targets
if (CheckTargetPages(fb_pages, zb_pages, r))
{
sd->m_syncpoint = SharedData::SyncTarget;
}
// check if the texture is not part of a target currently in use
if (CheckSourcePages(sd))
{
sd->m_syncpoint = SharedData::SyncSource;
}
// addref source and target pages
sd->UsePages(fb_pages, m_context->offset.fb.psm(), zb_pages, m_context->offset.zb.psm());
if (GSConfig.ShouldDump(s_n, g_perfmon.GetFrame()))
{
Sync(2);
std::string s;
u64 frame = g_perfmon.GetFrame();
// Dump the texture in 32 bits format. It helps to debug texture shuffle effect
// It will breaks the few games that really uses 16 bits RT
bool texture_shuffle = ((context->FRAME.PSM & 0x2) && ((context->TEX0.PSM & 3) == 2) && (m_vt.m_primclass == GS_SPRITE_CLASS));
if (GSConfig.SaveTexture && PRIM->TME)
{
if (texture_shuffle)
{
// Dump the RT in 32 bits format. It helps to debug texture shuffle effect
s = GetDrawDumpPath("%05d_f%05lld_itexraw_%05x_32bits.bmp", s_n, frame, (int)m_context->TEX0.TBP0);
m_mem.SaveBMP(s, m_context->TEX0.TBP0, m_context->TEX0.TBW, 0, 1 << m_context->TEX0.TW, 1 << m_context->TEX0.TH);
}
s = GetDrawDumpPath("%05d_f%05lld_itexraw_%05x_%s.bmp", s_n, frame, (int)m_context->TEX0.TBP0, GSUtil::GetPSMName(m_context->TEX0.PSM));
m_mem.SaveBMP(s, m_context->TEX0.TBP0, m_context->TEX0.TBW, m_context->TEX0.PSM, 1 << m_context->TEX0.TW, 1 << m_context->TEX0.TH);
}
if (GSConfig.SaveRT)
{
if (texture_shuffle)
{
// Dump the RT in 32 bits format. It helps to debug texture shuffle effect
s = GetDrawDumpPath("%05d_f%05lld_rt0_%05x_32bits.bmp", s_n, frame, m_context->FRAME.Block());
m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, 0, r.z, r.w);
}
s = GetDrawDumpPath("%05d_f%05lld_rt0_%05x_%s.bmp", s_n, frame, m_context->FRAME.Block(), GSUtil::GetPSMName(m_context->FRAME.PSM));
m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, r.z, r.w);
}
if (GSConfig.SaveDepth)
{
s = GetDrawDumpPath("%05d_f%05lld_rz0_%05x_%s.bmp", s_n, frame, m_context->ZBUF.Block(), GSUtil::GetPSMName(m_context->ZBUF.PSM));
m_mem.SaveBMP(s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, r.z, r.w);
}
Queue(data);
Sync(3);
if (GSConfig.SaveRT)
{
if (texture_shuffle)
{
// Dump the RT in 32 bits format. It helps to debug texture shuffle effect
s = GetDrawDumpPath("%05d_f%05lld_rt1_%05x_32bits.bmp", s_n, frame, m_context->FRAME.Block());
m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, 0, r.z, r.w);
}
s = GetDrawDumpPath("%05d_f%05lld_rt1_%05x_%s.bmp", s_n, frame, m_context->FRAME.Block(), GSUtil::GetPSMName(m_context->FRAME.PSM));
m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, r.z, r.w);
}
if (GSConfig.SaveDepth)
{
s = GetDrawDumpPath("%05d_f%05lld_rz1_%05x_%s.bmp", s_n, frame, m_context->ZBUF.Block(), GSUtil::GetPSMName(m_context->ZBUF.PSM));
m_mem.SaveBMP(s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, r.z, r.w);
}
}
else
{
Queue(data);
}
/*
if(0)//stats.ticks > 5000000)
{
printf("* [%lld | %012llx] ticks %lld prims %d (%d) pixels %d (%d)\n",
m_perfmon.GetFrame(), gd->sel.key,
stats.ticks,
stats.prims, stats.prims > 0 ? (int)(stats.ticks / stats.prims) : -1,
stats.pixels, stats.pixels > 0 ? (int)(stats.ticks / stats.pixels) : -1);
}
*/
}
void GSRendererSW::Queue(GSRingHeap::SharedPtr<GSRasterizerData>& item)
{
SharedData* sd = (SharedData*)item.get();
if (sd->m_syncpoint == SharedData::SyncSource)
{
Sync(4);
}
// update previously invalidated parts
sd->UpdateSource();
if (sd->m_syncpoint == SharedData::SyncTarget)
{
Sync(5);
}
if constexpr (LOG)
{
GSScanlineGlobalData& gd = ((SharedData*)item.get())->global;
fprintf(s_fp, "[%d] queue %05x %d (%d) %05x %d (%d) %05x %d %dx%d (%d %d %d) | %u %d %d\n",
sd->counter,
m_context->FRAME.Block(), m_context->FRAME.PSM, gd.sel.fwrite,
m_context->ZBUF.Block(), m_context->ZBUF.PSM, gd.sel.zwrite,
PRIM->TME ? m_context->TEX0.TBP0 : 0xfffff, m_context->TEX0.PSM, (int)m_context->TEX0.TW, (int)m_context->TEX0.TH, m_context->TEX0.CSM, m_context->TEX0.CPSM, m_context->TEX0.CSA,
PRIM->PRIM, sd->vertex_count, sd->index_count);
fflush(s_fp);
}
m_rl->Queue(item);
// invalidate new parts rendered onto
if (sd->global.sel.fwrite)
{
m_tc->InvalidatePages(sd->m_fb_pages, sd->m_fpsm);
}
if (sd->global.sel.zwrite)
{
m_tc->InvalidatePages(sd->m_zb_pages, sd->m_zpsm);
}
}
void GSRendererSW::Sync(int reason)
{
//printf("sync %d\n", reason);
u64 t = LOG ? GetCPUTicks() : 0;
m_rl->Sync();
if constexpr (LOG && false)
{
std::string s;
if (GSConfig.SaveRT)
{
s = GetDrawDumpPath("%05d_f%05lld_rt1_%05x_%s.bmp", s_n, g_perfmon.GetFrame(), m_context->FRAME.Block(), GSUtil::GetPSMName(m_context->FRAME.PSM));
m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, PCRTCDisplays.GetFramebufferRect(-1).width(), 512);
}
if (GSConfig.SaveDepth)
{
s = GetDrawDumpPath("%05d_f%05lld_zb1_%05x_%s.bmp", s_n, g_perfmon.GetFrame(), m_context->ZBUF.Block(), GSUtil::GetPSMName(m_context->ZBUF.PSM));
m_mem.SaveBMP(s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, PCRTCDisplays.GetFramebufferRect(-1).width(), 512);
}
}
t = LOG ? (GetCPUTicks() - t) : 0;
int pixels = m_rl->GetPixels();
if constexpr (LOG)
{
fprintf(s_fp, "sync n=%d r=%d t=%" PRIu64 " p=%d %c\n", s_n, reason, t, pixels, t > 10000000 ? '*' : ' ');
fflush(s_fp);
}
g_perfmon.Put(GSPerfMon::Fillrate, pixels);
}
void GSRendererSW::InvalidateVideoMem(const GIFRegBITBLTBUF& BITBLTBUF, const GSVector4i& r)
{
if constexpr (LOG)
{
fprintf(s_fp, "w %05x %u %u, %d %d %d %d\n", BITBLTBUF.DBP, BITBLTBUF.DBW, BITBLTBUF.DPSM, r.x, r.y, r.z, r.w);
fflush(s_fp);
}
GSOffset off = m_mem.GetOffset(BITBLTBUF.DBP, BITBLTBUF.DBW, BITBLTBUF.DPSM);
GSOffset::PageLooper pages = off.pageLooperForRect(r);
// check if the changing pages either used as a texture or a target
if (!m_rl->IsSynced())
{
pages.loopPagesWithBreak([this](u32 page)
{
if (m_fzb_pages[page] | m_tex_pages[page])
{
Sync(6);
return false;
}
return true;
});
}
m_tc->InvalidatePages(pages, off.psm()); // if texture update runs on a thread and Sync(5) happens then this must come later
}
void GSRendererSW::InvalidateLocalMem(const GIFRegBITBLTBUF& BITBLTBUF, const GSVector4i& r, bool clut)
{
if constexpr (LOG)
{
fprintf(s_fp, "%s %05x %u %u, %d %d %d %d\n", clut ? "rp" : "r", BITBLTBUF.SBP, BITBLTBUF.SBW, BITBLTBUF.SPSM, r.x, r.y, r.z, r.w);
fflush(s_fp);
}
if (!m_rl->IsSynced())
{
GSOffset off = m_mem.GetOffset(BITBLTBUF.SBP, BITBLTBUF.SBW, BITBLTBUF.SPSM);
GSOffset::PageLooper pages = off.pageLooperForRect(r);
pages.loopPagesWithBreak([this](u32 page)
{
if (m_fzb_pages[page])
{
Sync(7);
return false;
}
return true;
});
}
}
void GSRendererSW::UsePages(const GSOffset::PageLooper& pages, const int type)
{
pages.loopPages([this, type](u32 page)
{
switch (type)
{
case 0:
pxAssert((m_fzb_pages[page] & 0xFFFF) < USHRT_MAX);
m_fzb_pages[page] += 1;
break;
case 1:
pxAssert((m_fzb_pages[page] >> 16) < USHRT_MAX);
m_fzb_pages[page] += 0x10000;
break;
case 2:
pxAssert(m_tex_pages[page] < USHRT_MAX);
m_tex_pages[page] += 1;
break;
default:
break;
}
});
}
void GSRendererSW::ReleasePages(const GSOffset::PageLooper& pages, const int type)
{
pages.loopPages([this, type](u32 page)
{
switch (type)
{
case 0:
pxAssert((m_fzb_pages[page] & 0xFFFF) > 0);
m_fzb_pages[page] -= 1;
break;
case 1:
pxAssert((m_fzb_pages[page] >> 16) > 0);
m_fzb_pages[page] -= 0x10000;
break;
case 2:
pxAssert(m_tex_pages[page] > 0);
m_tex_pages[page] -= 1;
break;
default:
break;
}
});
}
bool GSRendererSW::CheckTargetPages(const GSOffset::PageLooper* fb_pages, const GSOffset::PageLooper* zb_pages, const GSVector4i& r)
{
const bool synced = m_rl->IsSynced();
const bool fb = (fb_pages != nullptr);
const bool zb = (zb_pages != nullptr);
GSOffset::PageLooper _fb_pages, _zb_pages;
const auto requirePages = [this, &fb_pages, &zb_pages, &r, &_fb_pages, &_zb_pages]
{
if (!fb_pages)
{
_fb_pages = m_context->offset.fb.pageLooperForRect(r);
fb_pages = &_fb_pages;
}
if (!zb_pages)
{
_zb_pages = m_context->offset.zb.pageLooperForRect(r);
zb_pages = &_zb_pages;
}
};
bool res = false;
if (m_fzb != m_context->offset.fzb4)
{
// targets changed, check everything
m_fzb = m_context->offset.fzb4;
m_fzb_bbox = r;
memset(m_fzb_cur_pages, 0, sizeof(m_fzb_cur_pages));
u32 used = 0;
requirePages();
fb_pages->loopPages([this, &used](u32 i)
{
const u32 row = i >> 5;
const u32 col = 1 << (i & 31);
m_fzb_cur_pages[row] |= col;
used |= m_fzb_pages[i];
used |= m_tex_pages[i];
});
zb_pages->loopPages([this, &used](u32 i)
{
const u32 row = i >> 5;
const u32 col = 1 << (i & 31);
m_fzb_cur_pages[row] |= col;
used |= m_fzb_pages[i];
used |= m_tex_pages[i];
});
if (!synced)
{
if (used)
{
if constexpr (LOG)
{
fprintf(s_fp, "syncpoint 0\n");
fflush(s_fp);
}
res = true;
}
//if(LOG) {fprintf(s_fp, "no syncpoint *\n"); fflush(s_fp);}
}
}
else
{
// same target, only check new areas and cross-rendering between frame and z-buffer
const GSVector4i bbox = m_fzb_bbox.runion(r);
const bool check = !m_fzb_bbox.eq(bbox);
m_fzb_bbox = bbox;
if (check)
{
// drawing area is larger than previous time, check new parts only to avoid false positives (m_fzb_cur_pages guards)
requirePages();
u32 used = 0;
fb_pages->loopPages([this, &used](u32 i)
{
u32 row = i >> 5;
u32 col = 1 << (i & 31);
if ((m_fzb_cur_pages[row] & col) == 0)
{
m_fzb_cur_pages[row] |= col;
used |= m_fzb_pages[i];
}
});
zb_pages->loopPages([this, &used](u32 i)
{
u32 row = i >> 5;
u32 col = 1 << (i & 31);
if ((m_fzb_cur_pages[row] & col) == 0)
{
m_fzb_cur_pages[row] |= col;
used |= m_fzb_pages[i];
}
});
if (!synced)
{
if (used)
{
if constexpr (LOG)
{
fprintf(s_fp, "syncpoint 1\n");
fflush(s_fp);
}
res = true;
}
}
}
if (!synced)
{
// chross-check frame and z-buffer pages, they cannot overlap with eachother and with previous batches in queue,
// have to be careful when the two buffers are mutually enabled/disabled and alternating (Bully FBP/ZBP = 0x2300)
if (fb && !res)
{
fb_pages->loopPagesWithBreak([this, &res](u32 page)
{
if (m_fzb_pages[page] & 0xffff0000)
{
if constexpr (LOG)
{
fprintf(s_fp, "syncpoint 2\n");
fflush(s_fp);
}
res = true;
return false;
}
return true;
});
}
if (zb && !res)
{
zb_pages->loopPagesWithBreak([this, &res](u32 page)
{
if (m_fzb_pages[page] & 0x0000ffff)
{
if constexpr (LOG)
{
fprintf(s_fp, "syncpoint 3\n");
fflush(s_fp);
}
res = true;
return false;
}
return true;
});
}
}
}
return res;
}
bool GSRendererSW::CheckSourcePages(SharedData* sd)
{
if (!m_rl->IsSynced())
{
for (size_t i = 0; sd->m_tex[i].t != NULL; i++)
{
GSOffset::PageLooper pages = sd->m_tex[i].t->m_offset.pageLooperForRect(sd->m_tex[i].r);
bool ret = false;
pages.loopPagesWithBreak([this, &ret](u32 pages)
{
// TODO: 8H 4HL 4HH texture at the same place as the render target (24 bit, or 32-bit where the alpha channel is masked, Valkyrie Profile 2)
if (m_fzb_pages[pages]) // currently being drawn to? => sync
{
ret = true;
return false;
}
return true;
});
if (ret)
return true;
}
}
return false;
}
bool GSRendererSW::GetScanlineGlobalData(SharedData* data)
{
GSScanlineGlobalData& gd = data->global;
const GSDrawingEnvironment& env = *m_draw_env;
const GSDrawingContext* context = m_context;
const GS_PRIM_CLASS primclass = m_vt.m_primclass;
gd.vm = m_mem.m_vm8;
gd.fbo = context->offset.fb;
gd.zbo = context->offset.zb;
gd.fzbr = context->offset.fzb4->row;
gd.fzbc = context->offset.fzb4->col;
gd.sel.key = 0;
gd.sel.fpsm = 3;
gd.sel.zpsm = 3;
gd.sel.atst = ATST_ALWAYS;
gd.sel.tfx = TFX_NONE;
gd.sel.ababcd = 0xff;
gd.sel.prim = primclass;
u32 fm = context->FRAME.FBMSK;
u32 zm = context->ZBUF.ZMSK || context->TEST.ZTE == 0 ? 0xffffffff : 0;
const u32 fm_mask = GSLocalMemory::m_psm[m_context->FRAME.PSM].fmsk;
// When the format is 24bit (Z or C), DATE ceases to function.
// It was believed that in 24bit mode all pixels pass because alpha doesn't exist
// however after testing this on a PS2 it turns out nothing passes, it ignores the draw.
if ((m_context->FRAME.PSM & 0xF) == PSMCT24 && m_context->TEST.DATE)
{
//DevCon.Warning("DATE on a 24bit format, Frame PSM %x", m_context->FRAME.PSM);
return false;
}
if (context->TEST.ZTE && context->TEST.ZTST == ZTST_NEVER)
{
fm = 0xffffffff;
zm = 0xffffffff;
}
if (PRIM->TME)
{
if (GSLocalMemory::m_psm[context->TEX0.PSM].pal > 0)
{
m_mem.m_clut.Read32(context->TEX0, env.TEXA);
}
}
if (context->TEST.ATE)
{
if (!TryAlphaTest(fm, zm))
{
gd.sel.atst = context->TEST.ATST;
gd.sel.afail = context->TEST.GetAFAIL(context->FRAME.PSM);
gd.aref = GSVector4i((int)context->TEST.AREF);
switch (gd.sel.atst)
{
case ATST_LESS:
gd.sel.atst = ATST_LEQUAL;
gd.aref -= GSVector4i::x00000001();
break;
case ATST_GREATER:
gd.sel.atst = ATST_GEQUAL;
gd.aref += GSVector4i::x00000001();
break;
}
}
}
bool fwrite = (fm & fm_mask) != fm_mask;
bool ftest = gd.sel.atst != ATST_ALWAYS || (context->TEST.DATE && context->FRAME.PSM != PSMCT24);
bool zwrite = zm != 0xffffffff;
bool ztest = context->TEST.ZTE && context->TEST.ZTST > ZTST_ALWAYS;
/*
printf("%05x %d %05x %d %05x %d %dx%d\n",
fwrite || ftest ? m_context->FRAME.Block() : 0xfffff, m_context->FRAME.PSM,
zwrite || ztest ? m_context->ZBUF.Block() : 0xfffff, m_context->ZBUF.PSM,
PRIM->TME ? m_context->TEX0.TBP0 : 0xfffff, m_context->TEX0.PSM, (int)m_context->TEX0.TW, (int)m_context->TEX0.TH);
*/
if (!fwrite && !zwrite)
return false;
gd.sel.fwrite = fwrite;
gd.sel.ftest = ftest;
if (fwrite || ftest)
{
gd.sel.fpsm = GSLocalMemory::m_psm[context->FRAME.PSM].fmt;
if ((primclass == GS_LINE_CLASS || primclass == GS_TRIANGLE_CLASS) && m_vt.m_eq.rgba != 0xffff)
{
gd.sel.iip = PRIM->IIP;
}
if (PRIM->TME)
{
gd.sel.tfx = context->TEX0.TFX;
gd.sel.tcc = context->TEX0.TCC;
gd.sel.fst = PRIM->FST;
gd.sel.ltf = m_vt.IsLinear();
if (GSLocalMemory::m_psm[context->TEX0.PSM].pal > 0)
{
gd.sel.tlu = 1;
gd.clut = (u32*)m_vertex_heap.alloc(sizeof(u32) * 256, VECTOR_ALIGNMENT); // FIXME: might address uninitialized data of the texture (0xCD) that is not in 0-15 range for 4-bpp formats
memcpy(gd.clut, (const u32*)m_mem.m_clut, sizeof(u32) * GSLocalMemory::m_psm[context->TEX0.PSM].pal);
}
gd.sel.wms = context->CLAMP.WMS;
gd.sel.wmt = context->CLAMP.WMT;
if (gd.sel.tfx == TFX_MODULATE && gd.sel.tcc && m_vt.m_eq.rgba == 0xffff && m_vt.m_min.c.eq(GSVector4i(128)))
{
// modulate does not do anything when vertex color is 0x80
gd.sel.tfx = TFX_DECAL;
}
CalculatePrimitiveCoversWithoutGaps();
bool mipmap = IsMipMapActive();
GIFRegTEX0 TEX0 = m_context->GetSizeFixedTEX0(m_vt.m_min.t.xyxy(m_vt.m_max.t), m_vt.IsLinear(), mipmap);
GSVector4i r = GetTextureMinMax(TEX0, context->CLAMP, gd.sel.ltf, true).coverage;
GSTextureCacheSW::Texture* t = m_tc->Lookup(TEX0, env.TEXA);
if (t == NULL)
{
pxAssert(0);
return false;
}
data->SetSource(t, r, 0);
gd.sel.tw = t->m_tw - 3;
if (mipmap)
{
// TEX1.MMIN
// 000 p
// 001 l
// 010 p round
// 011 p tri
// 100 l round
// 101 l tri
if (m_vt.m_lod.x > 0)
{
gd.sel.ltf = context->TEX1.MMIN >> 2;
}
else
{
// TODO: isbilinear(mmag) != isbilinear(mmin) && m_vt.m_lod.x <= 0 && m_vt.m_lod.y > 0
}
gd.sel.mmin = (context->TEX1.MMIN & 1) + 1; // 1: round, 2: tri
gd.sel.lcm = context->TEX1.LCM;
int mxl = std::min<int>((int)context->TEX1.MXL, 6) << 16;
int k = context->TEX1.K << 12;
if ((int)m_vt.m_lod.x >= (int)context->TEX1.MXL)
{
k = (int)m_vt.m_lod.x << 16; // set lod to max level
gd.sel.lcm = 1; // lod is constant
gd.sel.mmin = 1; // tri-linear is meaningless
}
if (gd.sel.mmin == 2)
{
mxl--; // don't sample beyond the last level (TODO: add a dummy level instead?)
}
if (gd.sel.fst)
{
pxAssert(gd.sel.lcm == 1);
gd.sel.lcm = 1;
}
if (gd.sel.lcm)
{
int lod = std::max<int>(std::min<int>(k, mxl), 0);
if (gd.sel.mmin == 1)
{
lod = (lod + 0x8000) & 0xffff0000; // rounding
}
gd.lod.i = GSVector4i(lod >> 16);
gd.lod.f = GSVector4i(lod & 0xffff).xxxxl().xxzz();
// TODO: lot to optimize when lod is constant
}
else
{
gd.mxl = GSVector4((float)mxl);
gd.l = GSVector4((float)(-(0x10000 << context->TEX1.L)));
gd.k = GSVector4((float)k);
}
GIFRegCLAMP MIP_CLAMP = context->CLAMP;
GSVector4 tmin = m_vt.m_min.t;
GSVector4 tmax = m_vt.m_max.t;
for (int i = 1, j = std::min<int>((int)context->TEX1.MXL, 6); i <= j; i++)
{
const GIFRegTEX0& MIP_TEX0 = GetTex0Layer(i);
MIP_CLAMP.MINU >>= 1;
MIP_CLAMP.MINV >>= 1;
MIP_CLAMP.MAXU >>= 1;
MIP_CLAMP.MAXV >>= 1;
m_vt.m_min.t *= 0.5f;
m_vt.m_max.t *= 0.5f;
GSTextureCacheSW::Texture* t = m_tc->Lookup(MIP_TEX0, env.TEXA, gd.sel.tw + 3);
if (t == NULL)
{
pxAssert(0);
return false;
}
GSVector4i r = GetTextureMinMax(MIP_TEX0, MIP_CLAMP, gd.sel.ltf, true).coverage;
data->SetSource(t, r, i);
}
m_vt.m_min.t = tmin;
m_vt.m_max.t = tmax;
}
else
{
// skip per pixel division if q is constant. Sprite uses flat
// q, so it's always constant by primitive.
// Note: the 'q' division was done in GSRendererSW::ConvertVertexBuffer
gd.sel.fst |= (m_vt.m_eq.q || primclass == GS_SPRITE_CLASS);
if (gd.sel.ltf && gd.sel.fst)
{
// if q is constant we can do the half pel shift for bilinear sampling on the vertices
// TODO: but not when mipmapping is used!!!
GSVector4 half(0x8000, 0x8000);
GSVertexSW* RESTRICT v = data->vertex;
for (int i = 0, j = data->vertex_count; i < j; i++)
{
GSVector4 t = v[i].t;
v[i].t = (t - half).xyzw(t);
}
}
}
u16 tw = 1u << TEX0.TW;
u16 th = 1u << TEX0.TH;
if (tw > 1024)
tw = 1;
if (th > 1024)
th = 1;
switch (context->CLAMP.WMS)
{
case CLAMP_REPEAT:
gd.t.min.U16[0] = gd.t.minmax.U16[0] = tw - 1;
gd.t.max.U16[0] = gd.t.minmax.U16[2] = 0;
gd.t.mask.U32[0] = 0xffffffff;
break;
case CLAMP_CLAMP:
gd.t.min.U16[0] = gd.t.minmax.U16[0] = 0;
gd.t.max.U16[0] = gd.t.minmax.U16[2] = tw - 1;
gd.t.mask.U32[0] = 0;
break;
case CLAMP_REGION_CLAMP:
// REGION_CLAMP ignores the actual texture size, but tw is already optimised in GetFixedTEX0Size.
// It's important we don't go off MAXU (if bigger) here as the sw renderer can attempt to draw pixels outside the triangle which can cause out of bounds issues.
gd.t.min.U16[0] = gd.t.minmax.U16[0] = std::min<u16>(context->CLAMP.MINU, tw - 1);
gd.t.max.U16[0] = gd.t.minmax.U16[2] = std::min<u16>(context->CLAMP.MAXU, tw - 1);
gd.t.mask.U32[0] = 0;
break;
case CLAMP_REGION_REPEAT:
// MINU is restricted to MINU or texture size, whichever is smaller, MAXU is an offset in the texture (Can be bigger than the texture).
gd.t.min.U16[0] = gd.t.minmax.U16[0] = context->CLAMP.MINU & (tw - 1);
gd.t.max.U16[0] = gd.t.minmax.U16[2] = context->CLAMP.MAXU;
gd.t.mask.U32[0] = 0xffffffff;
break;
default:
ASSUME(0);
}
switch (context->CLAMP.WMT)
{
case CLAMP_REPEAT:
gd.t.min.U16[4] = gd.t.minmax.U16[1] = th - 1;
gd.t.max.U16[4] = gd.t.minmax.U16[3] = 0;
gd.t.mask.U32[2] = 0xffffffff;
break;
case CLAMP_CLAMP:
gd.t.min.U16[4] = gd.t.minmax.U16[1] = 0;
gd.t.max.U16[4] = gd.t.minmax.U16[3] = th - 1;
gd.t.mask.U32[2] = 0;
break;
case CLAMP_REGION_CLAMP:
// REGION_CLAMP ignores the actual texture size, but th is already optimised in GetFixedTEX0Size
// It's important we don't go off MAXV (if bigger) here as the sw renderer can attempt to draw pixels outside the triangle which can cause out of bounds issues.
gd.t.min.U16[4] = gd.t.minmax.U16[1] = std::min<u16>(context->CLAMP.MINV, th - 1);
gd.t.max.U16[4] = gd.t.minmax.U16[3] = std::min<u16>(context->CLAMP.MAXV, th - 1); // ffx anima summon scene, when the anchor appears (th = 256, maxv > 256)
gd.t.mask.U32[2] = 0;
break;
case CLAMP_REGION_REPEAT:
// MINV is restricted to MINV or texture size, whichever is smaller, MAXV is an offset in the texture (Can be bigger than the texture).
gd.t.min.U16[4] = gd.t.minmax.U16[1] = context->CLAMP.MINV & (th - 1); // skygunner main menu water texture 64x64, MINV = 127
gd.t.max.U16[4] = gd.t.minmax.U16[3] = context->CLAMP.MAXV;
gd.t.mask.U32[2] = 0xffffffff;
break;
default:
ASSUME(0);
}
gd.t.min = gd.t.min.xxxxlh();
gd.t.max = gd.t.max.xxxxlh();
gd.t.mask = gd.t.mask.xxzz();
gd.t.invmask = ~gd.t.mask;
}
if (PRIM->FGE)
{
gd.sel.fge = 1;
gd.frb = env.FOGCOL.U32[0] & 0x00ff00ff;
gd.fga = (env.FOGCOL.U32[0] >> 8) & 0x00ff00ff;
}
if (context->FRAME.PSM != PSMCT24)
{
gd.sel.date = context->TEST.DATE;
gd.sel.datm = context->TEST.DATM;
}
if (!IsOpaque())
{
gd.sel.abe = PRIM->ABE;
gd.sel.ababcd = context->ALPHA.U32[0];
if (env.PABE.PABE)
{
gd.sel.pabe = 1;
}
if (PRIM->AA1 && (primclass == GS_LINE_CLASS || primclass == GS_TRIANGLE_CLASS))
{
gd.sel.aa1 = 1;
}
gd.afix = GSVector4i((int)context->ALPHA.FIX << 7).xxzzlh();
}
const u32 masked_fm = fm & fm_mask;
if (gd.sel.date
|| gd.sel.aba == 1 || gd.sel.abb == 1 || gd.sel.abc == 1 || gd.sel.abd == 1
|| (gd.sel.atst != ATST_ALWAYS && gd.sel.afail == AFAIL_RGB_ONLY)
|| (gd.sel.fpsm == 0 && masked_fm != 0 && masked_fm != fm_mask)
|| (gd.sel.fpsm == 1 && masked_fm != 0 && masked_fm != fm_mask)
|| (gd.sel.fpsm == 2 && masked_fm != 0 && masked_fm != fm_mask))
{
gd.sel.rfb = 1;
}
gd.sel.colclamp = env.COLCLAMP.CLAMP;
gd.sel.fba = context->FBA.FBA;
if (env.DTHE.DTHE)
{
gd.sel.dthe = 1;
if (m_last_dimx != env.DIMX)
{
m_last_dimx = env.DIMX;
ExpandDIMX(m_dimx, env.DIMX);
}
gd.dimx = (GSVector4i*)m_vertex_heap.alloc(sizeof(m_dimx), VECTOR_ALIGNMENT);
std::memcpy(gd.dimx, m_dimx, sizeof(m_dimx));
}
}
gd.sel.zwrite = zwrite;
gd.sel.ztest = ztest;
if (zwrite || ztest)
{
u32 z_max = 0xffffffff >> (GSLocalMemory::m_psm[context->ZBUF.PSM].fmt * 8);
gd.sel.zpsm = GSLocalMemory::m_psm[context->ZBUF.PSM].fmt;
gd.sel.ztst = ztest ? context->TEST.ZTST : (int)ZTST_ALWAYS;
gd.sel.zequal = !!m_vt.m_eq.z;
gd.sel.zoverflow = (u32)GSVector4i(m_vt.m_max.p).z == 0x80000000U;
gd.sel.zclamp = (u32)GSVector4i(m_vt.m_max.p).z > z_max;
}
#if _M_SSE >= 0x501
gd.fm = fm;
gd.zm = zm;
if (gd.sel.fpsm == 1)
{
gd.fm |= 0xff000000;
}
else if (gd.sel.fpsm == 2)
{
u32 rb = gd.fm & 0x00f800f8;
u32 ga = gd.fm & 0x8000f800;
gd.fm = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3) | 0xffff0000;
}
if (gd.sel.zpsm == 1)
{
gd.zm |= 0xff000000;
}
else if (gd.sel.zpsm == 2)
{
gd.zm |= 0xffff0000;
}
#else
gd.fm = GSVector4i(fm);
gd.zm = GSVector4i(zm);
if (gd.sel.fpsm == 1)
{
gd.fm |= GSVector4i::xff000000();
}
else if (gd.sel.fpsm == 2)
{
GSVector4i rb = gd.fm & 0x00f800f8;
GSVector4i ga = gd.fm & 0x8000f800;
gd.fm = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3) | GSVector4i::xffff0000();
}
if (gd.sel.zpsm == 1)
{
gd.zm |= GSVector4i::xff000000();
}
else if (gd.sel.zpsm == 2)
{
gd.zm |= GSVector4i::xffff0000();
}
#endif
if (gd.sel.prim == GS_SPRITE_CLASS && !gd.sel.ftest && !gd.sel.ztest && data->bbox.eq(data->bbox.rintersect(data->scissor))) // TODO: check scissor horizontally only
{
gd.sel.notest = 1;
u32 ofx = context->XYOFFSET.OFX;
for (int i = 0, j = m_vertex.tail; i < j; i++)
{
#if _M_SSE >= 0x501
if ((((m_vertex.buff[i].XYZ.X - ofx) + 15) >> 4) & 7) // aligned to 8
#else
if ((((m_vertex.buff[i].XYZ.X - ofx) + 15) >> 4) & 3) // aligned to 4
#endif
{
gd.sel.notest = 0;
break;
}
}
}
return true;
}
GSRendererSW::SharedData::SharedData()
: m_fpsm(0)
, m_zpsm(0)
, m_using_pages(false)
, m_syncpoint(SyncNone)
{
m_tex[0].t = NULL;
global.sel.key = 0;
global.clut = NULL;
global.dimx = NULL;
}
GSRendererSW::SharedData::~SharedData()
{
ReleasePages();
if (global.clut)
GSRingHeap::free(global.clut);
if (global.dimx)
GSRingHeap::free(global.dimx);
if constexpr (LOG)
{
fprintf(s_fp, "[%d] done t=%" PRId64 " p=%d | %d %d %d | %08x_%08x\n",
counter,
GetCPUTicks() - start, pixels,
primclass, vertex_count, index_count,
global.sel.hi, global.sel.lo);
fflush(s_fp);
}
}
//static TransactionScope::Lock s_lock;
void GSRendererSW::SharedData::UsePages(const GSOffset::PageLooper* fb_pages, int fpsm, const GSOffset::PageLooper* zb_pages, int zpsm)
{
if (m_using_pages)
return;
{
//TransactionScope scope(s_lock);
if (global.sel.fb)
{
GSRendererSW::GetInstance()->UsePages(*fb_pages, 0);
}
if (global.sel.zb)
{
GSRendererSW::GetInstance()->UsePages(*zb_pages, 1);
}
for (size_t i = 0; m_tex[i].t != NULL; i++)
{
GSRendererSW::GetInstance()->UsePages(m_tex[i].t->m_pages, 2);
}
}
if (fb_pages)
m_fb_pages = *fb_pages;
if (zb_pages)
m_zb_pages = *zb_pages;
m_fpsm = fpsm;
m_zpsm = zpsm;
m_using_pages = true;
}
void GSRendererSW::SharedData::ReleasePages()
{
if (!m_using_pages)
return;
{
//TransactionScope scope(s_lock);
if (global.sel.fb)
{
GSRendererSW::GetInstance()->ReleasePages(m_fb_pages, 0);
}
if (global.sel.zb)
{
GSRendererSW::GetInstance()->ReleasePages(m_zb_pages, 1);
}
for (size_t i = 0; m_tex[i].t != NULL; i++)
{
GSRendererSW::GetInstance()->ReleasePages(m_tex[i].t->m_pages, 2);
}
}
m_using_pages = false;
}
void GSRendererSW::SharedData::SetSource(GSTextureCacheSW::Texture* t, const GSVector4i& r, int level)
{
pxAssert(!m_tex[level].t);
m_tex[level].t = t;
m_tex[level].r = r;
m_tex[level + 1].t = nullptr;
}
void GSRendererSW::SharedData::UpdateSource()
{
for (size_t i = 0; m_tex[i].t; i++)
{
if (m_tex[i].t->Update(m_tex[i].r))
{
global.tex[i] = m_tex[i].t->m_buff;
}
else
{
printf("GS: out-of-memory, texturing temporarily disabled\n");
global.sel.tfx = TFX_NONE;
}
}
if (GSConfig.SaveTexture && GSConfig.ShouldDump(s_n, g_perfmon.GetFrame()))
{
const u64 frame = g_perfmon.GetFrame();
std::string s;
for (size_t i = 0; m_tex[i].t; i++)
{
const GIFRegTEX0& TEX0 = g_gs_renderer->GetTex0Layer(i);
s = GetDrawDumpPath("%05d_f%05lld_itex%d_%05x_%s.bmp", g_gs_renderer->s_n, frame, i, TEX0.TBP0, GSUtil::GetPSMName(TEX0.PSM));
m_tex[i].t->Save(s);
}
if (global.clut)
{
s = GetDrawDumpPath("%05d_f%05lld_itexp_%05x_%s.bmp", g_gs_renderer->s_n, frame, (int)g_gs_renderer->m_context->TEX0.CBP, GSUtil::GetPSMName(g_gs_renderer->m_context->TEX0.CPSM));
GSPng::Save((IsDevBuild || GSConfig.SaveAlpha) ? GSPng::RGB_A_PNG : GSPng::RGB_PNG, s, reinterpret_cast<const u8*>(global.clut), 256, 1, sizeof(u32) * 256, GSConfig.PNGCompressionLevel, false);
}
}
}